Practice Test 1

1. Determine whether the equation $|y|-x=3$ defines a function.

Answer: y is not a function of x.
2. Determine whether the function $f(x)=x^{4}-9 x^{2}$ even, odd, or neither. Find the intercepts of the function.
Answer: The function is even
3. $f(x)=\sqrt{x-3}$ and $g(x)=f(2 x+6)$. Find the domain of each function. Answer: $D_{f}=[3, \infty) ; D_{g}=[-1.5, \infty)$
4. Graph the piecewise function $(x)=\left\{\begin{array}{cc}x+3 & \text { if }-2 \leq x<1 \\ 2 & \text { if } 1 \leq x \leq 4 \\ 16-x^{2} & \text { if } x>4\end{array}\right.$. Find the domain, (-2), andf(5).

Answer: Domain $=[-2, \infty) ; f(-2)=1 ; f(5)=9$

5. Use the graph of $f(x)$ in Figure 1 to find the following.
a. $f(3)$ and $f(6)$.
b. The domain.
c. The x-intercepts.
d. The values of x for which function is negative.
e. The y-intercept.
f. The zeros of the function.
g. the value of x for which $f(x)=1.5$
h. The range
i. The average change of f from 1 to 5
j. The values, if any, for which f has a local maximum.
k. The values, if any, for which f has a local minimum.

1. What is the local minimum of the function?
m . Find the absolute minimum and maximum.
n. The intervals on which the function is increasing
o. The intervals on which the function is decreasing

Figure 1

Answer:
a. $f(3)=-3$ and $f(6)=4$.
b. The domain $=[-4, \infty)$.
c. The x-intercepts: $(2,0)$ and $(4,0)$
d. The values of x for which function is negative: $(2,4)$
e. The y-intercept: $(0,2)$
f. The zeros of the function: 2 and 4
g. the value of x for which $f(x)=1.5$: $x=0.5$ and $x=5.25$
h. The range: $[-3, \infty)$
i. The average change of f from 1 to 5 is 0 .
j. The value for which f has a local maximum is -2
k . The value for which f has a local minimum is 3 .

1. The local minimum of the function is -3
m . The absolute minimum is -3 . There is no absolute maximum.
n . The intervals on which the function is increasing are $(-4,-2)$ and $(3, \infty)$.
o. The interval on which the function is decreasing is $(-2,3)$.
2. The graph of a function $f(x)$ is given in Figure 2. Write the equation of $f(x)$ in piecewise form.

$\mathrm{f}(\mathrm{x})$

Figure 2
Answer: $f(x)=\left\{\begin{array}{cl}-x+5 & \text { if } 2 \leq x<6 \\ x-7 & \text { if } 6 \leq x<8 \\ 3 & \text { if } 8 \leq x<\infty\end{array}\right.$
Remark
The function also can be written in the form $\left\{\begin{array}{c}|x-6|-1 \text { if } 2 \leq x<8 \\ 3 \quad \text { if } 8 \leq x<\infty\end{array}\right.$
7. Find the average rate of change of the function $f(x)=\sqrt{x-1}$ from $x_{1}=1$ to $x_{2}=10$

Answer: $\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{1}{3}$
8. Find the difference quotient of $f(x)=3 x^{2}-2 x$

Answer: $\frac{f(x+h)-f(x)}{h}=6 x-2+3 h$
9. Find the intercepts of $f(x)=|2 x-1|-3$

Answer: $(2,0),(-1,0),(0,-2)$
10. Find all points at which the line $y=3$ crosses the graph of

$$
f(x)=\sqrt{2 x+6}-x
$$

Answer: $(-1,3)$ and $(-3,3)$
11. Write the equation in slope-intercept form for the line passing through $(-5,1)$ and perpendicular to the line whose equation is $x+4 y-12=0$.

Answer: $y=4 x+21$
12. Write the equation in general form for the line passing through $(-4,-3)$ and parallel to the line whose intercepts are $(0,2)$ and $(4,0)$.
Answer: $x+2 y+10=0$
13. Find all values of x for which the function $f(x)=|5-x|-1$ is positive. Write the answer in interval notation.
Answer: $(-\infty, 4) \cup(6, \infty)$
14. Find the domain of $f(x)=\sqrt{2 x+4}+\frac{x+3}{x^{2}-7 x-60}$

Answer: $[-4,12) \cup(12, \infty)$
15. Solve the compound inequality $5 \leq 1-2 x<7$

Answer: (-3, -2]

