Northern Virginia Community College Vector Calculus (4 CR.) Syllabus

Fall 2015

Instructor: Dr. Alexander Krantsberg Email: <u>akrantsberg@nvcc.edu</u> Phone: 703-845-6548 Office: Bisdorf, Room AA 352

Class Time: Tuesdays and Thursdays 7:30 PM - 9:20 PM. **Classroom**: Bisdorf / AA 467

Office hours: Tuesday and Thursday 5:00 PM - 7:00 PM

Important Dates

August 24	Classes begin
September 7	Labor Day holiday. College closed.
September 10	Last day to drop a class with a tuition refund
October 12-13	Professional development days for faculty. No classes.
November 3	Last day to withdraw without grade penalty.
November 25	Non-instructional day. No classes. College offices close at noon.
November 26-27	Thanksgiving holiday. College closed.
November 25	Non-instructional days. No classes. College offices closed.
December 14 – 19	Final exam week
December 17	Final Exam

Course Content

(visit http://www.nvcc.edu/academic/coursecont/summaries/mth277.htm for details)

Course Description

Vector Calculus MTH 277 presents vector valued functions, partial derivatives, multiple integrals and topics from the calculus of vectors. Lecture 4 hours per week.

Course Purpose

This course is primarily for students in mathematics, engineering the sciences and other areas requiring strong mathematical backgrounds. The purpose is to give students a basic understanding of the concepts of differential calculus and integral calculus of several variables.

Prerequisites

Satisfactory completion of MTH 174 - Calculus with Analytic Geometry II or quivalent.

Course Objectives

After completion this course, you should be able to:

A. determine the equation of lines, planes, spheres, cylinders, and quadric surfaces in 3- dimensional space

B. define a three-dimensional vector function and compute its higher order derivatives

Northern Virginia Community College Vector Calculus (4 CR.) Syllabus

Fall 2015

C. determine the arc length of a vector function and determine the tangent, normal, binormal, velocity and

acceleration vectors and curvature for a vector function at a given point

D. define limit and continuity of a function of two or three variables

E. define and compute the partial derivative, total derivative, directional derivatives and extrema of functions of two and three variables

F. compute exact differentials and line integrals

G. compute double integrals in Cartesian and polar coordinates

H. compute triple integrals in Cartesian, cylindrical, and spherical coordinates

I. apply Green's Theorem to the solution of line integrals

J. compute area, volume, mass and center of mass using double and triple integrals

K. obtain competency in the use of a graphing utility and CAS in the topics below

Major Topics

A. Three-Dimensional Geometry and Vector Functions

- 1. Definition
- 2. Vector algebra (dot and cross products, direction cosines)
- 3. Equations of lines, spheres, cylinders and quadric surfaces
- 4. Derivatives and definition of vector functions
- 5. Arc Length
- 6. Tangent, normal, binormal vectors; velocity and acceleration

B. Partial Derivatives

1. Limit and continuity of functions of two and three variables

- 2. Partial and total derivatives: directional derivatives
- 3. Extrema of functions of two and three variables
- 4. Exact differentials

C. Double and Triple Integration

- 1. Definition
- 2. Double and triple integrals in various coordinates (Cartesian, cylindrical and spherical)
- 3. Line Integrals
- 4. Green's Theorem

5. Area, volume, mass and center of mass using double and triple integrals

Textbook

Edwards; Calculus: Early Transcendental Functions, 6th Edition, by Ron Larson and Bruce ISBN: 978-1-285-77477-0

This textbook is also used in Calculus II MTH 174 and Vector Calculus MTH 277.

There are three options for you to choose.

- 1. Rent a used or new textbook (\$135-\$195).
- 2. Buy a used or new textbook (\$225-\$300).
- 3. Buy a textbook with WebAssign Access Code (\$336).
- 4. Buy a WebAssign Access code with an online version of the textbook (eBook) -
- (under \$80 for one term and about \$110 for the life of the edition).

WebAssign

Northern Virginia Community College Vector Calculus (4 CR.) Syllabus

Fall 2015

WebAssign is a valuable tool for study and review, but it is not required. There will be an extra credit of 10% for homework if you do it online using WebAssign. If you purchased access to WebAssign, the class key is **nvcc 1561 1244 Solutions to odd-numbered numbers problems in the textbook can be found on** http://www.calcchat.com

Calculator

This course requires a graphing device TI-83 or better; TI-89 is highly recomended.

Grading Policy

Grading Categories

- Homework 10%
- Quizzes 15%
- Exams 45 %
- Final Exam 30 %

Course Grade

The course grade will be a letter grade:

- A 90%-100%
- B 80%-89.9%
- C 70%-79.9%
- D 60%-69.9%
- F below 60%

No audits are given in this class. The last day to withdraw with refund is September 10, 2015. The last day to withdraw without grade penalty is November 3, 2015. You are responsible for doing all paperwork before these dates.

Attendance:

It is very important to attend this class. If you miss no more than two classes, your lowest grade on homework, quizzes, or tests will be dropped. My experience shows that regular attendance and active class participation, in most cases, results in a passing grade.

Grading Assignments

Homework: Problems will be assigned for every section covered in class. The homework is due the following week of class. Do not forget to put your name, the text book section, pages and problem numbers.

<u>Note</u>: *If your average grade on the tests is more than 70%, you will get a 5% extra credit for your homework.*

Quizzes: We will have quizzes on most weeks when there is no test. You can make up two quizzes.

Tests: There will be four tests, one hour each.

The tentative schedule for the tests is this.

Northern Virginia Community College Vector Calculus (4 CR.) Syllabus

- Test 1 September 8
- Test 2 October 6
- Test 3 November 3
- Test 4 December 1

Please let me know in advance if you are not able to attend the class on any of these days. You may make up a test within two weeks after the test. It is your responsibility to schedule the make-up test with me.

Final Exam

The final exam is scheduled for <u>Thursday</u>, <u>December 17, 2015 from 7:30 PM to 9:20 PM</u>. The exam will be comprehensive and cover all course material. All Students are expected to attend the final exam. There is no make-up for the final.

Exam and Test Policy

You may not share calculators during exams or quizzes. You may not use cell phones as calculators during exams and quizzes.

Cheating – receiving or giving unauthorized help- will result in a score of 0 on that exam.

Classroom Behavior

You should silence cellular phones. No texting during class time.

Inclement Weather or Other Emergency Events

If the college is closed, a text alert will be sent to cell phones registered on NOVA Alert, a notice will be posted on the College's website <u>www.nvcc.edu/emergency</u>. You can also call the College Call Center at 703.323.3000.

Special Needs and Accommodations

Please address with me any special problems or needs at the beginning of the semester. If you are seeking accommodations based on a disability, you must provide a disability data sheet, which can be obtained from the counselor for special needs, who is located in Bisdorf (AA) 229, phone (703) 933-1840. More information may be found at the following website: http://www.nvcc.edu/current-students/disability-services/index.html

Note: <u>The syllabus is subject to change.</u>

Course Outline

(Subject to change at any time)

Week	Date	Section	Assignment (due the following week on Monday)
1	08/25	11.1 Vectors in the Plane	pp.755-758:1,7,12,25,28,31,38,40,41,49,68,75
		11.2 Space Coordinates 11.3 The Dot Product	pp.763-765:1,14,24,36,38,42,45,57,65,70 pp.773-774:8,16,18,21,26,32,63,69
			pp://e //,10,10,10,21,20,02,00,00

Northern Virginia Community College Vector Calculus (4 CR.) Syllabus

Fall 2015

1	08/27	11.4 The Cross Product	pp.781-782:2,6,8,16,22,28,30,31,34,37,49
2	09/01	11.5 Lines and Planes in Space	pp.791-793:1,8,16,22,25,31,33,38,44,52,61,63,74,84,93
		11.6 Surfaces in Space	pp.802-803:1,2,4,6,13,15,19,21,23,31
2	09/03	11.7 Cylindrical and Spherical Coordinates	pp.809-811:1,8,10,16,20,25,32,38,44,51,60,62,66,87
3	09/08	TEST 1	
3	09/10	12.1 Vector-Valued Functions 12.2 Differentiation and Integration of Vector- Valued Functions	pp.821-823:2,9,15,22,27,37,48,53,67,70 pp.830-832:14,22,25,30,39,42,44,52,60
4	09/15	12.3 Velocity andAcceleration12.4 Tangent Vectors andNormal Vectors	pp.838-840:3,14,20,21,33,45,50 pp.848-850:2,8,14,22,41,49
4	09/17	12.5 Arc Length and Curvature	pp.860-862:3,12,20,26,33,37,42,53,81
5	09/22	13.1 Introduction to Functions of Several Variables	pp.876-879:3,12,20,26,33,37,42,53,81
5	09/24	13.2 Limits and Continuity	pp.887-889:6,16,26,31,43,57,64,76
6	09/29	13.3 Partial Derivatives 13.4 Differentials	pp.896-897:3,12,18,29,41,47,52,56,62,67,84 pp.905-906:2,8,14,17,26,33,37
6	10/01	13.5Chain Rules	pp.913-914:1,4,6,10,11,14,15,17,22,28,34,49
7	10/06	TEST 2	
7	10/08	13.6 Directional Derivatives and Gradients	pp.924-926:3,7,10,15,20,25,33,40,47,54,61
8	10/13		Professional Development day for faculty. No classes.
8	10/15	13.7 Tangents Lines and Normal Lines	pp.933-935:6,12,19,25,29,32,40,45,51
9	10/20	13.8 Extrema of Functionsof Two Variables13.9 Applications ofExtrema	pp.942-945:5,8,24,43,47,62 pp.949-951:1,6,10,17,31
9	10/22	*13.10 Lagrange Multipliers	pp.958-959:3,6,9,14,27,39
10	10/27	14.11terated Integrals and Area in the Plane 14.2Double Integrals and Volume	pp.972-973:1,5,10,11,14,18,27,31,32,36,43,46,54,61,68 pp.983-985:1,2,7,10,13,16,21,24,25,31,35,46,51
10	10/29	14.3 Change of Variables	pp.991-993:1,6,8,9,14,19,22,25,28,31,36,43,39,59
11	11/03	TEST 3	
11	11/05	14.4Center of Mass and Moments of Inertia *14.5 Surface Area	pp.1000-1001:1,5,8,11,14,21,23,28,35
12	11/10	14.6 Triple Integrals and Applications	pp.1017-1019:1,6,9,11,14,18,21,25,28,33,35,38,51
12	11/12	14.7Triple Integrals in	pp.1025-1027:2,6,8,10,13,21,24

Northern Virginia Community College Vector Calculus (4 CR.) Syllabus

Fall 2015

		Cylindrical and Spherical	
		Coordinates	
13	11/17	*14.8 Change of Variables	
13	11/19	15.1Vector Fields	pp.1049-1052:1,7,25,38,39,60
14	11/24	15.2 Line Integrals	pp.1079-1081:1,9,14,16,19,22,25,27,35,51
14	11/26-		Thanksgiving holiday. College closed.
	27		
15	12//01	TEST 4	
15	12//3	15.3Conservative Vector	*pp.1090-1092:6,8,14,20,26,37,50
		Fields	
16	12/08	15.4Green's Theorem	pp.1099-1101:2,8,12,16,22,26
16 16	12/08 12/10	15.4Green's Theorem Review	pp.1099-1101:2,8,12,16,22,26
16 16 17	12/08 12/10 12/15	15.4Green's Theorem Review Review	pp.1099-1101:2,8,12,16,22,26