3A. Predict relative acidity and basicity of molecules or based on element effects, inductive effects, resonance effects and hybridization effects.

OCSL: 3.1 - 3.33

3A.1 Circle the stronger acid in each pair.

- a) HCl / HBr

- b) HCF₃ / HCBr₃ c) NH₃ / H₂O d) ClCH₂CH₂OH / CH₃CH₂OH
- e) HF / H₂O

- f) HI / HBr g) H_2O / H_2S h) CBr_3OH / CCl_3OH

$$\rightarrow$$
OH \rightarrow C

k) CH₃CO₂H / CH₂CICO₂H

3A.2 Circle the stronger base in each pair.

- a) H₂O / H₂S

- b) Br^-/F^- c) CH_3^-/OH^- d) CH_3NH^-/CH_3O^-
- e) $H_2C = CH^- / H_2C = C^-$ f) F^- / OH^- g) $CH_3CH_2^- / CH_3O^-$ h) H_2O / NH_3

- i) CFH₂CH₂O⁻ / CH₃CFHO⁻ j) CH₂BrCO₂⁻ / CH₂CICO₂⁻

3A.3 Briefly explain the acidity difference between the two molecules below.

3B. Identify the acid and base in a Brønsted-Lowry acid-base reactions, draw the products and predict the direction based on pKa values or structure.

OCSL: 3.34 - 3.45

- 3B.1 Identify the acids and bases in each equilibrium then predict the direction of equilibrium based on the given pK_a information.
- a) pKa of the carbon acid is 25, pKa of the nitrogen acid is 38.

$$HC = C^{\bigcirc}$$
 NH_3 \longrightarrow O NH_2 $HC = CH$

b) The nitrogen acid pKa of 10.6 and the sulfur based acid has a pKa of -7

c) The pKa of the nitrogen based acid is 10.66, pKa of the oxygen based acid is 16.02.

$$^{\oplus}$$
 CH₃NH₃ + OCH₃ $\stackrel{\longrightarrow}{\longrightarrow}$ CH₃NH₂ + HOCH₃

3B.2 Sodium amide (NaNH₂) can be used to deprotonate acetylene according to the reaction below. Which has a lower pK_a, acetylene or ammonia?

$$H-C=C-H$$
 + $NaNH_2$ \longrightarrow $H-C=C\ominus Na^{\oplus}$ + NH_3

3B.3 Predict the direction of equilibrium for the following acid-base reactions based on your knowledge of acidity trends.

a)
$$H_2O$$
 + $CH_3^ \longleftrightarrow$ OH^- + CH_4

b)
$$NH_2^-$$
 + CH_4 $\stackrel{\longrightarrow}{\longleftarrow}$ NH_3 + CH_3^-

c)
$$HC\equiv C^-$$
 + CH_4 $\stackrel{\longrightarrow}{\longleftarrow}$ $HC\equiv CH$ + CH_3^-

3B.4 Predict the products of the following acid-base reactions.

b)
$$H_2SO_4 + O$$

e)
$$H-C\equiv C-H$$
 + Θ CH_2CH_3

f)
$$NH_2 + H_2SO_4 \longrightarrow$$

g)
$$CH_3OH + HCI \rightarrow$$

3B.5

a)

- a) Malonic acid is more acidic than acetic acid. Explain.
- b) Indicate the direction of the equilibrium.

3C. Identify the acid and base in a Lewis acid-base reaction, draw the products of a Lewis acid-base reaction.

3C.1 Identify the Lewis acid and base in the reactions below.

$$\oplus$$
 + H₂O \longrightarrow Θ H₂

$$CH_3OCH_3$$
 + AICI₃ \longrightarrow CH_3OCH_3

c) Br- +
$${}^{+}CH_{3}$$
 \rightarrow Br-CH₃

d)
$$FeCl_3 + H_2O \rightarrow H_2O^+-FeCl_3$$

3C.2 Predict the products of the following Lewis acid-base reactions.

a) BH₃ +
$$^{-}$$
OH \rightarrow

b)
$$NH_3 + BF_3 \rightarrow$$

c)
$$AICI_3 + HOCH_3 \rightarrow$$

d)
$$^{+}CH_{3}$$
 + SH_{2} \rightarrow

e)
$$Cl^-$$
 + $FeCl_3$ \rightarrow