3A. Predict relative acidity and basicity of molecules or based on element effects, inductive effects, resonance effects and hybridization effects. OCSL: 3.1 - 3.33 3A.1 Circle the stronger acid in each pair. - a) HCl / HBr - b) HCF₃ / HCBr₃ c) NH₃ / H₂O d) ClCH₂CH₂OH / CH₃CH₂OH - e) HF / H₂O - f) HI / HBr g) H_2O / H_2S h) CBr_3OH / CCl_3OH $$\rightarrow$$ OH \rightarrow C k) CH₃CO₂H / CH₂CICO₂H 3A.2 Circle the stronger base in each pair. - a) H₂O / H₂S - b) Br^-/F^- c) CH_3^-/OH^- d) CH_3NH^-/CH_3O^- - e) $H_2C = CH^- / H_2C = C^-$ f) F^- / OH^- g) $CH_3CH_2^- / CH_3O^-$ h) H_2O / NH_3 - i) CFH₂CH₂O⁻ / CH₃CFHO⁻ j) CH₂BrCO₂⁻ / CH₂CICO₂⁻ 3A.3 Briefly explain the acidity difference between the two molecules below. ## 3B. Identify the acid and base in a Brønsted-Lowry acid-base reactions, draw the products and predict the direction based on pKa values or structure. OCSL: 3.34 - 3.45 - 3B.1 Identify the acids and bases in each equilibrium then predict the direction of equilibrium based on the given pK_a information. - a) pKa of the carbon acid is 25, pKa of the nitrogen acid is 38. $$HC = C^{\bigcirc}$$ NH_3 \longrightarrow O NH_2 $HC = CH$ b) The nitrogen acid pKa of 10.6 and the sulfur based acid has a pKa of -7 c) The pKa of the nitrogen based acid is 10.66, pKa of the oxygen based acid is 16.02. $$^{\oplus}$$ CH₃NH₃ + OCH₃ $\stackrel{\longrightarrow}{\longrightarrow}$ CH₃NH₂ + HOCH₃ 3B.2 Sodium amide (NaNH₂) can be used to deprotonate acetylene according to the reaction below. Which has a lower pK_a, acetylene or ammonia? $$H-C=C-H$$ + $NaNH_2$ \longrightarrow $H-C=C\ominus Na^{\oplus}$ + NH_3 3B.3 Predict the direction of equilibrium for the following acid-base reactions based on your knowledge of acidity trends. a) $$H_2O$$ + $CH_3^ \longleftrightarrow$ OH^- + CH_4 b) $$NH_2^-$$ + CH_4 $\stackrel{\longrightarrow}{\longleftarrow}$ NH_3 + CH_3^- c) $$HC\equiv C^-$$ + CH_4 $\stackrel{\longrightarrow}{\longleftarrow}$ $HC\equiv CH$ + CH_3^- 3B.4 Predict the products of the following acid-base reactions. b) $$H_2SO_4 + O$$ e) $$H-C\equiv C-H$$ + Θ CH_2CH_3 f) $$NH_2 + H_2SO_4 \longrightarrow$$ g) $$CH_3OH + HCI \rightarrow$$ 3B.5 a) - a) Malonic acid is more acidic than acetic acid. Explain. - b) Indicate the direction of the equilibrium. ## 3C. Identify the acid and base in a Lewis acid-base reaction, draw the products of a Lewis acid-base reaction. 3C.1 Identify the Lewis acid and base in the reactions below. $$\oplus$$ + H₂O \longrightarrow Θ H₂ $$CH_3OCH_3$$ + AICI₃ \longrightarrow CH_3OCH_3 c) Br- + $${}^{+}CH_{3}$$ \rightarrow Br-CH₃ d) $$FeCl_3 + H_2O \rightarrow H_2O^+-FeCl_3$$ 3C.2 Predict the products of the following Lewis acid-base reactions. a) BH₃ + $$^{-}$$ OH \rightarrow b) $$NH_3 + BF_3 \rightarrow$$ c) $$AICI_3 + HOCH_3 \rightarrow$$ d) $$^{+}CH_{3}$$ + SH_{2} \rightarrow e) $$Cl^-$$ + $FeCl_3$ \rightarrow