
Chapter 15	Extra Credit	Name:
1. Write the ionic equa		oduct (K_{sp}) expression for each of the following slightly
(a) PbCl ₂		
(b) Ag ₂ S		
(c) Sr ₃ (PO ₄) ₂		
2. Use solubility produ water: CaF ₂ , Hg ₂ Cl ₂ , Pb		ilts is the most soluble, in terms of moles per liter, in pure
3. Calculate the molar	solubility of each. Look up Ksp in the ap	pendix.
(a) PbI ₂		
(b) Ag ₂ SO ₄		

6. Calculate the molar solubility of:
(a) AgCl(s) in pure water.
AgCl(s) in 0.010 <i>M</i> NaCl
How does the solubility change when a common ion is added?
(b) CaF₂(s) in 0.00125 <i>M</i> KF
(c) Ni(OH) $_2(s)$ in a solution with pH of 12.00

- 7. Will a precipitate form given the concentrations indicated? (See appendix for K_{sp} values.)
- (a) $CaCO_3$: $[Ca^{2+}] = 0.0020 M$, $[CO_3^{2-}] = 0.010M$

(b) Mn(OH)₂: [Mn²⁺] = $1.0 \times 10^{-4} M$, [OH⁻] = $1.0 \times 10^{-5} M$

- 8. Draw the Lewis Structure for each and Label the Lewis Acids and the Lewis Bases (reactants only)
- (a) $BF_3 + F^- \rightarrow BF_4^-$
- (b) $AI(OH)_3 + OH^- \rightarrow AI(OH)_4^-$

Draw the Lewis Structure for each and Label the Lewis Acids and the Lewis Bases (reactants only) and predict the Products.

(a) $HCI(g) + NH_3(g) \rightarrow$

(b) $NH_4^+ + C_2H_5O^- \rightarrow$

9. A volume of .080 L of 2.0 x 10^{-3} M Ba(NO ₃) ₂ (aq) is added to .020 L of 5.0 x 10^{-3} M Li ₂ SO ₄ (aq). Will a precipitate form?