| Chapter 15 | Extra Credit | Name: | |---|---|--| | 1. Write the ionic equa | | oduct (K_{sp}) expression for each of the following slightly | | (a) PbCl ₂ | | | | (b) Ag ₂ S | | | | (c) Sr ₃ (PO ₄) ₂ | | | | 2. Use solubility produ
water: CaF ₂ , Hg ₂ Cl ₂ , Pb | | ilts is the most soluble, in terms of moles per liter, in pure | | | | | | 3. Calculate the molar | solubility of each. Look up Ksp in the ap | pendix. | | (a) PbI ₂ | | | | (b) Ag ₂ SO ₄ | | | | 6. Calculate the molar solubility of: | |--| | (a) AgCl(s) in pure water. | | AgCl(s) in 0.010 <i>M</i> NaCl | | How does the solubility change when a common ion is added? | | (b) CaF₂(s) in 0.00125 <i>M</i> KF | | (c) Ni(OH) $_2(s)$ in a solution with pH of 12.00 | - 7. Will a precipitate form given the concentrations indicated? (See appendix for K_{sp} values.) - (a) $CaCO_3$: $[Ca^{2+}] = 0.0020 M$, $[CO_3^{2-}] = 0.010M$ (b) Mn(OH)₂: [Mn²⁺] = $1.0 \times 10^{-4} M$, [OH⁻] = $1.0 \times 10^{-5} M$ - 8. Draw the Lewis Structure for each and Label the Lewis Acids and the Lewis Bases (reactants only) - (a) $BF_3 + F^- \rightarrow BF_4^-$ - (b) $AI(OH)_3 + OH^- \rightarrow AI(OH)_4^-$ Draw the Lewis Structure for each and Label the Lewis Acids and the Lewis Bases (reactants only) and predict the Products. (a) $HCI(g) + NH_3(g) \rightarrow$ (b) $NH_4^+ + C_2H_5O^- \rightarrow$ | 9. A volume of .080 L of 2.0 x 10^{-3} M Ba(NO ₃) ₂ (aq) is added to .020 L of 5.0 x 10^{-3} M Li ₂ SO ₄ (aq). Will a precipitate form? | |--| |