1. Write the equilibrium expression (Kc) for following reactions. In each case indicate whether the equilibrium is Homogeneous or Heterogeneous

$$2 \text{ CH}_3\text{Cl}(g) + \text{Cl}_2(g) \rightleftharpoons 2 \text{ CH}_2\text{Cl}_2(g) + \text{H}_2(g)$$

$$P_4(s) + 5 O_2(g) \rightleftharpoons P_4O_{10}(s) Kc = 1/[O_2]^5$$

$$CH_4(g) + 2H_2S(g) \rightleftharpoons CS_2(g) + 4H_2(g)$$
 Kc = $[CS_2][H_2]^4/[CH_4][H_2S]^2$

$$AI(OH)_3$$
 (s) \rightleftharpoons AI^{3+} (aq) + 3 OH^- (aq) $Kc = [AI^{3+}][OH^-]^3$

2. The equilibrium constant is given for one of the reactions below. Determine the value of the missing equilibrium constant.

$$H_2(g) + Br_2(g) \implies 2 HBr(g)$$
 $K_C = 3.8 \times 10^4$
 $2 HBr(g) \implies H_2(g) + Br_2(g)$ $K_C = ? 2.6 \times 10^{-5}$

3. In which of the following reactions will $K_C = K_p$?

A)
$$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$$

B)
$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3 H_2(g)$$

C)
$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

D)
$$CO(g) + 2 H_2(g) \rightleftharpoons CH_3OH(g)$$

E)
$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$

4. For the reaction: $N_2O(g) + NO_2(g) \implies 3 NO(g)$, $K_c = 4.2 \times 10^{-4}$ at 500. K. What is K_p for the reaction at this temperature? Kp = 0.017

5. Determine the value of K_C for the following reaction if the equilibrium concentrations are as follows: $[HCI]_{eq} = 0.13 \text{ M}, [HI]_{eq} = 5.6 \times 10^{-16} \text{ M}, [CI_2]_{eq} = 0.0019 \text{ M}.$

$$2 \text{ HCl}(g) + I_2(s) \rightleftharpoons 2 \text{ HI}(g) + \text{Cl}_2(g)$$
 Kc = 3.5×10^{-32}

6. Determine the value of K_p for the following reaction if the equilibrium concentrations are as follows: $P(CO)_{eq} = 6.8 \times 10^{-11}$ atm, $P(O_2)_{eq} = 1.3 \times 10^{-3}$ atm, $P(CO_2)_{eq} = 0.041$ atm.

$$2 CO(g) + O_2(g) \rightleftharpoons 2 CO_2(g)$$
 Kp = 2.8×10^{20}

7. Consider the following reaction and its equilibrium constant:

$$SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$$
 $K_C = 0.33$

Is the reaction at equilibrium if it contains: 0.39 M SO₂, 0.14 M NO₂, 0.11 M SO₃ and 0.14 M NO.

If it is not at equilibrium, in which direction will the equilibrium shift?

Q<K right!

8. Consider the following reaction, equilibrium concentrations, and equilibrium constant at a particular temperature. Determine the equilibrium concentration of $H_2O(g)$.

$$C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$$
 $K_C = 9.0 \times 10^3$

$$[C_2H_4]_{eq} = 0.015 \text{ M}$$
 $[C_2H_5OH]_{eq} = 1.69 \text{ M}$

 $[H_2O] = 0.013 M$

9. Consider the exothermic equilibrium reaction

$$UO_2(s) + 4HF(g) \rightleftharpoons UF_4(g) + 2H_2O(g)$$

In which direction will the equilibrium shift when the following changes are made? Explain your reasoning.

- (A) Additional UO₂(s) is added? No effect
- (B) The water vapor is removed? Right
- (C) The reaction takes place in a glass container and the HF reacts with the glass? Left
- (D) The volume of the reaction vessel is reduced? Right
- (E) The temperature is increased? left

10. Consider the following reaction:

$$N_2O(g) + NO_2(g) \implies 3 NO(g)$$

$$\Delta H^{\circ} = +155.7 \text{ kJ}$$

In which direction will the equilibrium be shifted by the following changes? Explain your reasoning.

- (A) Adding N₂O Right
- (B) Removing NO₂ Left
- (C) Removing N₂O Left
- (D) Adding a catalyst No effect
- (E) Adding NO Left
- (F) Increasing the temperature of the reaction mixture Right
- (G) Adding He gas to the reaction mixture at constant volume no effect
- (H) Decreasing the volume of the reaction vessel Left

11. Consider the following reaction at equilibrium: $CO(g) + 2 H_2(g) \rightleftharpoons CH_3OH(g)$ $\Delta H^\circ = -18 \text{ kJ}$

How will the amount of CH₃OH at equilibrium be affected by the following changes? Explain your reasoning.

- (A) Adding CO (g) go up
- (B) Removing H₂ (g) go down
- (C) Increasing the temperature go down
- (D) Adding a catalyst no effect
- (E) Decreasing the volume of the reaction container. Go up
- 12. Consider the following reaction:

$$CH_4(g) + 2 H_2S(g) \rightleftharpoons CS_2(g) + 4 H_2(g)$$

A reaction mixture initially contains 0.50 M CH₄ and 0.75 M H₂S. If the equilibrium concentration of H₂ is 0.44 M, find the equilibrium constant (K_C) for the reaction.

Kc = .038

13.	Consider	the	follo	wing	reaction	١:
-----	----------	-----	-------	------	----------	----

$$CO_2(g) + C(graphite) \rightleftharpoons 2 CO(g)$$

A reaction mixture initially contains 0.56 atm ${\rm CO}_2$ and 0.32 atm ${\rm CO}$. Determine the equilibrium pressure of ${\rm CO}$ if ${\rm K}_p$ for the reaction at this temperature is 2.25.

$$P(CO) = .85 atm$$

14. For the reaction: $2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$, $K_c = 1.6 \times 10^{-5}$. What are the equilibrium concentrations of each species if 1.0 mole of NOCl is initially placed in an empty 2.0 L flask?

$$[NO] = .020 \text{ M}, [Cl_2] = .010 \text{ M}, [NOCl_2] = .50 \text{ M}$$

15. A reaction vessel is charged with hydrogen iodide, which partially decomposes to molecular hydrogen and iodine:

2HI (g) \rightleftharpoons H₂(g) + I₂(g): When the system comes to equilibrium at 425 °C, P_{HI} = 0.708 atm and $P_{H_2} = P_{I_2} = 0.0960$ atm. Calculate K_p for this reaction.

$$Kp = Kc = .018$$

Calculate K_c for the same reaction.

16. Consider the reaction

$$CH_2O(g) \rightleftharpoons CO(g) + H_2(g)$$

In an experiment, 0.050 mol of CH_2O (g) was placed in empty 500. mL vessel. At equilibrium, the concentration of CH_2O (g) was found to be 0.066 M. Calculate K_c for the reaction.

Kc = .018

17. At 298 K, $K_c = 1.45$ for the following reaction 2 BrCl (g) \Longrightarrow Br₂(g) + Cl₂(g)

A reaction mixture was prepared with the following initial concentrations.

[BrCl] = 0.0400 M, [Br₂] = 0.0300 M and [Cl₂] = 0.0300 M

Calculate their equilibrium concentrations.

 $[Br_2] = [Cl_2] = 0.035 M, [BrCl] = 0.029 M$

18. In air, at 25 $^{\circ}$ C and 1.00 atm, the concentrations of N₂ and O₂ are 0.033 M and 0.00180, respectively. The reaction N₂(g) + O₂ (g) \rightleftharpoons 2 NO (g) has K_c= 4.8 x 10⁻¹¹ at 25 $^{\circ}$ C Taking the given concentrations as the initial concentrations, calculate the equilibrium concentration of NO at 25 $^{\circ}$ C

 $[NO] = 5.3 \times 10^{-8} M$