\qquad
\qquad

1. Write the equilibrium expression (Kc) for following reactions. In each case indicate whether the equilibrium is Homogeneous or Heterogeneous
$2 \mathrm{CH}_{3} \mathrm{Cl}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}(g)+\mathrm{H}_{2}(g)$
$\mathrm{P}_{4}(\mathrm{~s})+5 \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s}) \mathrm{Kc}=1 /\left[\mathrm{O}_{2}\right]^{5}$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons \mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{Kc}=\left[\mathrm{CS}_{2}\right]\left[\mathrm{H}_{2}\right]^{4} /\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}$
$\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \mathrm{Kc}=\left[\mathrm{Al}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}$
2. The equilibrium constant is given for one of the reactions below. Determine the value of the missing equilibrium constant.

$$
\begin{array}{ll}
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(g) \rightleftharpoons 2 \mathrm{HBr}(g) & \mathrm{K}_{\mathrm{C}}=3.8 \times 10^{4} \\
2 \mathrm{HBr}(g) \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{Br}_{2}(g) & \mathrm{K}_{\mathrm{C}}=? 2.6 \times 10^{-5}
\end{array}
$$

3. In which of the following reactions will $K_{C}=K_{p}$?
A) $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)$
B) $\mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{CO}(g)+3 \mathrm{H}_{2}(g)$
C) $\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)$
D) $\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(g)$
E) $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)$
4. For the reaction: $\quad \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{NO}(\mathrm{g}), \mathrm{K}_{\mathrm{c}}=4.2 \times 10^{-4}$ at 500 . K.

What is K_{p} for the reaction at this temperature? $K p=0.017$
5. Determine the value of K_{C} for the following reaction if the equilibrium concentrations are as follows:
$[\mathrm{HCl}]_{\mathrm{eq}}=0.13 \mathrm{M},[\mathrm{HI}]_{\mathrm{eq}}=5.6 \times 10-16 \mathrm{M},\left[\mathrm{Cl}_{2}\right]_{\mathrm{eq}}=0.0019 \mathrm{M}$.

$$
2 \mathrm{HCl}(g)+\mathrm{I}_{2}(s) \rightleftharpoons 2 \mathrm{HI}(g)+\mathrm{Cl}_{2}(g) \quad \mathrm{Kc}=3.5 \times 10^{-32}
$$

6. Determine the value of K_{p} for the following reaction if the equilibrium concentrations are as follows: $\mathrm{P}(\mathrm{CO})_{\mathrm{eq}}=6.8 \times 10^{-11} \mathrm{~atm}, \mathrm{P}\left(\mathrm{O}_{2}\right)_{\mathrm{eq}}=1.3 \times 10^{-3} \mathrm{~atm}, \mathrm{P}\left(\mathrm{CO}_{2}\right) \mathrm{eq}=0.041 \mathrm{~atm}$.
$2 \mathrm{CO}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{CO}_{2}(g) \quad \mathrm{Kp}=2.8 \times 10^{20}$
7. Consider the following reaction and its equilibrium constant:
$\mathrm{SO}_{2}(g)+\mathrm{NO}_{2}(g) \rightleftharpoons \mathrm{SO}_{3}(g)+\mathrm{NO}(g) \quad \mathrm{K}_{\mathrm{C}}=0.33$

Is the reaction at equilibrium if it contains: $0.39 \mathrm{M} \mathrm{SO}_{2}, 0.14 \mathrm{M} \mathrm{NO}_{2}, 0.11 \mathrm{M} \mathrm{SO}_{3}$ and 0.14 M NO .

If it is not at equilibrium, in which direction will the equilibrium shift?
$\mathrm{Q}<\mathrm{K}$ right!
8. Consider the following reaction, equilibrium concentrations, and equilibrium constant at a particular temperature. Determine the equilibrium concentration of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.
$\mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(g) \quad \mathrm{K}_{\mathrm{C}}=9.0 \times 10^{3}$
$\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]_{e q}=0.015 \mathrm{M}$
$\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]_{\mathrm{eq}}=1.69 \mathrm{M}$
$\left[\mathrm{H}_{2} \mathrm{O}\right]=0.013 \mathrm{M}$
9. Consider the exothermic equilibrium reaction

$$
\mathrm{UO}_{2}(\mathrm{~s})+4 \mathrm{HF}(\mathrm{~g}) \rightleftharpoons \mathrm{UF}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

In which direction will the equilibrium shift when the following changes are made? Explain your reasoning.
(A) Additional $\mathrm{UO}_{2}(\mathrm{~s})$ is added? No effect
(B) The water vapor is removed? Right
(C) The reaction takes place in a glass container and the HF reacts with the glass? Left
(D) The volume of the reaction vessel is reduced? Right
(E) The temperature is increased? left
10. Consider the following reaction:

$$
\mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{NO}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=+155.7 \mathrm{~kJ}
$$

In which direction will the equilibrium be shifted by the following changes? Explain your reasoning.
(A) Adding $\mathrm{N}_{2} \mathrm{O}$ Right
(B) Removing NO_{2} Left
(C) Removing $\mathrm{N}_{2} \mathrm{O}$ Left
(D) Adding a catalyst No effect
(E) Adding NO Left
(F) Increasing the temperature of the reaction mixture Right
(G) Adding He gas to the reaction mixture at constant volume no effect
(H) Decreasing the volume of the reaction vessel Left
11. Consider the following reaction at equilibrium: $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \quad \Delta \mathrm{H}^{\circ}=-18 \mathrm{~kJ}$ How will the amount of $\mathrm{CH}_{3} \mathrm{OH}$ at equilibrium be affected by the following changes? Explain your reasoning.
(A) Adding CO (g) go up
(B) Removing H_{2} (g) go down
(C) Increasing the temperature go down
(D) Adding a catalyst no effect
(E) Decreasing the volume of the reaction container. Go up
12. Consider the following reaction:

$$
\mathrm{CH}_{4}(g)+2 \mathrm{H}_{2} \mathrm{~S}(g) \rightleftharpoons \mathrm{CS}_{2}(g)+4 \mathrm{H}_{2}(g)
$$

A reaction mixture initially contains $0.50 \mathrm{M} \mathrm{CH}_{4}$ and $0.75 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$. If the equilibrium concentration of H_{2} is 0.44 M , find the equilibrium constant $\left(\mathrm{K}_{\mathrm{C}}\right)$ for the reaction.
$\mathrm{Kc}=.038$
13. Consider the following reaction:

$$
\mathrm{CO}_{2}(g)+\mathrm{C}(\text { graphite }) \rightleftharpoons 2 \mathrm{CO}(g)
$$

A reaction mixture initially contains 0.56 atm CO_{2} and 0.32 atm CO . Determine the equilibrium pressure of CO if K_{p} for the reaction at this temperature is 2.25 .
$P(C O)=.85 \mathrm{~atm}$
14. For the reaction: $2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=1.6 \times 10^{-5}$.

What are the equilibrium concentrations of each species if 1.0 mole of NOCl is initially placed in an empty 2.0 L flask?
$[\mathrm{NO}]=.020 \mathrm{M},\left[\mathrm{Cl}_{2}\right]=.010 \mathrm{M},\left[\mathrm{NOCl}_{2}\right]=.50 \mathrm{M}$
15. A reaction vessel is charged with hydrogen iodide, which partially decomposes to molecular hydrogen and iodine:
$2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}):$ When the system comes to equilibrium at $425^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{HI}}=0.708$ atm and $P_{H_{2}}=P_{I_{2}}=0.0960 \mathrm{~atm}$. Calculate K_{p} for this reaction.
$K p=K c=.018$

Calculate K_{c} for the same reaction.
16. Consider the reaction
$\mathrm{CH}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$

In an experiment, 0.050 mol of $\mathrm{CH}_{2} \mathrm{O}(\mathrm{g})$ was placed in empty $500 . \mathrm{mL}$ vessel. At equilibrium, the concentration of $\mathrm{CH}_{2} \mathrm{O}$ (g) was found to be 0.066 M . Calculate K_{c} for the reaction.
$K c=.018$
17. At $298 \mathrm{~K}, \mathrm{~K}_{\mathrm{c}}=1.45$ for the following reaction

$$
2 \mathrm{BrCl}(\mathrm{~g}) \rightleftharpoons \mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

A reaction mixture was prepared with the following initial concentrations.
$[\mathrm{BrCl}]=0.0400 \mathrm{M},\left[\mathrm{Br}_{2}\right]=0.0300 \mathrm{M}$ and $\left[\mathrm{Cl}_{2}\right]=0.0300 \mathrm{M}$
Calculate their equilibrium concentrations.
$\left[\mathrm{Br}_{2}\right]=\left[\mathrm{Cl}_{2}\right]=0.035 \mathrm{M},[\mathrm{BrCl}]=0.029 \mathrm{M}$
18. In air, at $25{ }^{\circ} \mathrm{C}$ and 1.00 atm, the concentrations of N_{2} and O_{2} are 0.033 M and 0.00180 , respectively. The reaction $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$ has $\mathrm{K}_{\mathrm{c}}=4.8 \times 10^{-11}$ at $25^{\circ} \mathrm{C}$
Taking the given concentrations as the initial concentrations, calculate the equilibrium concentration of NO at $25^{\circ} \mathrm{C}$
$[\mathrm{NO}]=5.3 \times 10^{-8} \mathrm{M}$

