8A. Identify halides and carbocations as being $1^{\circ}, 2^{\circ}$, or 3°
8A.1 Classify the following halides and carbocations as $1^{\circ}, 2^{\circ}$, or 3°.
a)

3°
b)

c)

d) 1°
e)

f)

2°
g)

h)

i)

j)

BA. 2 Circle the most stable cation in each set.
a)

b)

c) resonance

BA. 3 Why does stability of carbocations increase with substitution? Alkyl groups are e^{-}donating ($s p^{2}$ lower in energy than p^{3}) which stabilizes cation
or Hyperconjugation - bonds on alkyl groups can donate to empty p orbital on
Draw the mechanism of an $\mathbf{S}_{\mathbf{N}} \mathbf{2}$ and $\mathbf{S}_{\mathbf{N}} 1$ reactions including stereochemistry it. ion stabilizing

BB. 1 Draw a mechanism for the following reactions.
a)

b)

c)

d)

8C. Predict how reaction conditions (substrate, nucleophile, leaving group, solvent) effect the rate of $\mathrm{S}_{\mathbf{N}} 1$ and $\mathrm{S}_{\mathbf{N}} \mathbf{2}$ reactions.

OCSL: 9.1-9.35
BC. 1 Circle the faster substitution reaction among the following pairs. If the rate is not affected, circle both.

b)

c)

d)

g)

h)

$\xrightarrow{i)} \xrightarrow{\text { i) }}$

j)

k)

I)

m)

o)

p)

BC. 2 Circle the best choice for each statement.
Best Substrate for $\mathrm{S}_{\mathrm{N}} 1$

Best nucleophile in DMSO
$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$
Best solvent for $\mathrm{S}_{\mathrm{N}} 2$
Best leaving group
Best Nucleophile in $\mathrm{CH}_{3} \mathrm{CN}$
Best nucleophile in $\mathrm{H}_{2} \mathrm{O}$
Best substrate for $\mathrm{S}_{\mathrm{N}} 2$
Best solvent for $\mathrm{S}_{\mathrm{N}} 1$

(I-
I-

F-
F-
$\mathrm{Cl}-$

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}
$$

$$
\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}
$$

$\mathrm{OH}-$
(OH-)
F-

BC. 3 What would happen to the rate of the reaction below under the following conditions? (increase, decrease, same)

a) Increasing the concentration of water same
b) decreasing the concentration of halide decrease
c) changing the leaving group to bromine decrease
d) starting with 2-iodo propane decrease

BC. 4 What would happen to the rate of the reaction below under the following conditions? (increase, decrease, same)

ค $\mathrm{\sim}$
a) the solvent is changed from $\mathrm{CH}_{3} \mathrm{OH}$ to DMSO increase
b) the leaving group is changed from bromine to chlorine decrease
c) the nucleophile is changed to $\mathrm{H}_{2} \mathrm{O}$ decrease

8 C .5 The reaction of 1-chlorobutane with $\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$in $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ to give butyl acetate is greatly accelerated by adding a small quantity of iodide ion. Explain.

$\begin{array}{ll}\text { Iodine is the } & \text { It reacts } \\ \text { better Nus in protic } & \text { fasterwith } \\ \text { solvents } & \text { the halide } \\ & \text { giving Iodobutare }\end{array}$
Iodine is the
better Nūin protic solvents
the halide giving Iodobutare

Iodine is a better
leaving group reacting faster with acetate than origial halide
Cl^{\ominus}

Product is formed. Iodine is regenerated to react with more chiorobutane

8D. Determine if a set of conditions is likely to be $S_{N} 1$ or $S_{N} 2$ and predict the products including stereochemistry.

8D. 1 Determine if the following would be associated with an $\mathrm{S}_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2$ reaction.
a) One step SNQ
f) Best in protic solvents Sisl
b) Favors strong nucleophiles sw 2
g) Two steps SNI
c) racemizes stereochemistry S_{N} I
h) Inverts stereochemistry Sna
d) $2^{\text {nd }}$ order kinetics $S_{N 2}$
i) $1^{\text {st }}$ order kinetics SW)
e) Has a carbocation intermediate SWI
j) Best in aprotic solvents SN 2

8D. 2 Indicate if the following is likely to go through a $S_{N} 1$ or $S_{N} 2$ mechanism.
a)

g)

c)

d)

e)

k)

8D. 3 Indicate if the following reactions proceed through an $S_{N} 1$ or $S_{N} 2$ mechanism. Draw the substitution product(s); show stereochemistry if relevant.
a)

SN2

b)
 NoH

c)

SNI

d)

SNI

e)

SNI

> f)

SN2

8D. 4 Propose a way to make the following product. (note stereochemistry)

8E. Identify alkenes as being mono, di, tri or tetra substituted, cis or trans, and predict the trend in stability

OCSL: 10.1 - 10.11
8 E .1 Identify the alkenes in the following natural products as being mono, di, tri or tetra substituted. Identify di-substiuted as cis or trans.

8E. 2 Rank the following groups of alkenes from least stable (4) to most stable (1).
a)

b)

2

1

3

4
c)

2

1

3

4

8 F . Draw the mechanism of the E2 \& E1 reactions.

8F. 1 Draw the mechanism of the following reactions.
a)

b)

8F.2 The molecule below reacts through an SN1/E1 pathway in methanol. Draw the mechanism for each pathway.

8G.1 Draw all possible elimination products for the following molecules and circle the major product.
a)

f)

j)

g)

d)

h)

i)

k) (assume E2)

I)

m) (assume E2)

8G.2 In the reaction below, $\underline{\mathbf{B}}$ is the major product. Explain.

8G.3 What alkyl halides would you start with to get each of the following as the major elimination product?
a)

c)

b)

d)
N

8 H .1 For the following E2 reaction, what happens to the rate with each of the following changes? (increase, decrease, same)

a) the solvent is changed to DMF \qquad increase
b) the concentration of ${ }^{-} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}$ is decreased decrease
c) The halide is changed to 2-bromobutane \qquad

8 H .2 Circle the faster elimination reaction. If the rate is not affected by the change, circle both.

d)

e)

8H. 3 Circle ALL that apply to the given statement.
a) Works best with bulky bases:
$\mathrm{S}_{\mathrm{N}} 1 \quad \mathrm{~S}_{\mathrm{N}} 2 \quad \mathrm{E} 1$
b) Requires antiperiplanar geometry:
$S_{N} 1 \quad S_{N} 2 \quad E 1$
(E2)
c) The mechanism involves a carbocation intermediate:
(SN) $\mathrm{S}_{\mathrm{N}} 2$ (E1)
d) The mechanism has two steps: $\mathrm{S}_{\mathrm{N}} 1$ S_{N}
e) Rate increases with better leaving groups:
f) Stereochemistry in inverted :

g) Zaitsev product is formed
$\mathrm{S}_{\mathrm{N}} 1 \quad \mathrm{~S}_{\mathrm{N}} 2$
ET
ER)
h) Rate increases with concentration of the substrate:
i) Rate increases in aprotic solvents $S_{N} 1$

E1

8H.4. Briefly explain why is ${ }^{\circ} \mathrm{OtBu}$ sometimes favored over hydroxide as an elimination reagent. -otBu is preferred when of will give substitution products

81. Determine if a set of conditions will be $S_{N} 2, E 2$ or $S_{N} 1 / E 1$ and predict the products.

OCSL: 10.12-10.39
8I.1 Label the reaction most likely to take place (E1,SN1, E2, SN2 or a combination of these) under the following conditions. Draw the major product(s), include stereochemistry when relevant.
a) E2 f) SNT/El

b) $\mathrm{SN} / \varepsilon 1$

c) $\varepsilon 2$

d) $S N / E I$

Θ_{I}

g) SN 2

h) $S N / E I$

j) $S N 2$

8I. 2 Fill in the reagents in the following reactions.
a)

b)

c)
d)

8J. Predict the elimination products of dihalides
8J. 1 Predict the major product of the following reaction.
a)

b)

c)

d)

