- 1. Which of the following processes are spontaneous and which are nonspontaneous?
 - a) spreading of the fragrance of perfume or air freshener in a room = Spontaneous
 - b) cleaning your room = Nonspontaneous
 - c) $2H_2O(I) \rightarrow 2H_2(g) + O_2(g)$ (at room temperature, 1 atm pressure) = Nonspontaneous
 - d) Building a house of cards = Nonspontaneous
- 2. Predict the sign of entropy change (positive or negative) for the following processes/reactions
 - a) a lake freezing negative
 - b) $SO_2(g) + CaO(s) \rightarrow CaSO_3(s)$ negative
 - c) $NH_3(g) + HCl(g) \rightarrow NH_4Cl(s)$ negative
 - d) $4 CO_2(g) + 2 H_2O(g) \rightarrow 2 C_2H_2(g) + 5 O_2(g)$ Positive
 - e) $N_2H_4(g) \rightarrow N_2(g) + 2 H_2(g)$ Positive
- 3. Using the values for standard molar entropies (S°) from the Appendix in your text book, calculate Δ S° for the following reactions at 25°C.
 - a) $CH_3OH(I) \rightarrow CO(g) + 2 H_2(g) 332 J/K$
 - b) $N_2H_4(I) + H_2(g) \rightarrow 2 NH_3(g)$ 133.8 J/K
 - c) $NH_3(g) + 5 O_2(g) \rightarrow 4 NO(g) + 6 H_2O(g) 757.2 J/K$
- 4. Consider the following reaction at constant P. Use the information here to determine the value of ΔS_{surr} at 355 K. Predict whether or not this reaction will be spontaneous at this temperature.

$$2 \text{ NO}(g) + \text{O}_2(g) \rightarrow 2 \text{ NO}_2(g)$$
 $\Delta H = -114 \text{ kJ}$ 321 J/K

5. Above what temperature does the following reaction become nonspontaneous?

2 H₂S(g) + 3 O₂(g)
$$\rightarrow$$
 2 SO₂(g) + 2 H₂O(g) Given: ΔH = -1036 kJ; ΔS = -153.2 J/K

T<6760 K

6. What is the minimum temperature required for the spontaneous conversion of CCl₄(I) to CCl₄(g) Given: $\Delta H^{\circ}_{(vap)}$ is 57.3 kJ/mol and $\Delta S^{\circ}_{(vap)}$ is 164 J/(mol K)?

T>349 K

7. Using the data in Sapling, calculate the standard Gibbs free energy change (ΔG°) for the following reactions at 25.0°C. <u>In each case, indicate whether the reaction is spontaneous or not.</u>

The ΔG° for H₂SO₄(I) is -690 kJ/mole and is incorrect in the back of Openstax!

- a) $SO_3(g) + H_2O(I) \leftrightarrows H_2SO_4(I)$ -81.8 kJ spontaneous
- b) $2 \text{ HgO}(s) \iff 2 \text{ Hg(I)} + O_2(g) + 117 \text{ kJ nonspontaneous}$
- c) $2 \text{ HNO3}(aq) + \text{NO}(g) \iff 3 \text{ NO}_2(g) + \text{H}_2\text{O}(l) + \text{51 kJ}$ nonspontaneous

8. For each of the reactions listed in 7, calculate the value of the equilibrium constant K at 25.0°C.

a)
$$SO_3(g) + H_2O(I) \Leftrightarrow H_2SO_4(I)$$
 $K = 2.2 \times 10^{14}$

b)
$$2 \text{ HgO}(s) \iff 2 \text{ Hg(I)} + O_2(g) \quad K = 3.1 \times 10^{-21}$$

c)
$$2 \text{ HNO3}(aq) + \text{NO}(g) \iff 3 \text{ NO2}(g) + \text{H2O}(l)$$
 $K = 1.1 \times 10^{-9}$

9. Use Hess's law to calculate ΔG°_{TXN} for: $CIO(g) + O_3(g) \rightarrow CI(g) + 2 O_2(g)$ using the following information.

$$2 O_3(g) \rightarrow 3 O_2(g)$$
 $\Delta G^{\circ}_{TXN} = +489.6 \text{ kJ}$ $Cl(g) + O_3(g) \rightarrow ClO(g) + O_2(g)$ $\Delta G^{\circ}_{TXN} = -34.5 \text{ kJ}$

524.1 kJ

10. Estimate ΔG°_{TXN} for the following reaction at 775 K.

16.8 kJ

2 Hg(g) + O₂(g) → 2 HgO(s)
$$\Delta$$
H° = -304.2 kJ; Δ S° = -414.2 J/K

11. Calculate ΔG_{TXN} at 298 K under the conditions shown below for the following reaction.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$
 $\Delta G^{\circ} = +131.1 \text{ kJ}$

$$P(CO_2) = 0.00100 atm$$

114 kJ

12. Consider the reaction N_2O_4 (g) $\rightleftarrows 2 NO_2$ (g)

a) Using the data in your textbook, calculate the Gibbs free energy change (ΔG°) for the reaction at 298 K.

b) Calculate the value of K_{eq} at 298 K

$$K = .32$$

c) Calculate ΔG at 298 K when the partial pressures for N_2O_4 and NO_2 are 10.5 and 0.50 atm respectively.

-6.5 kJ

- 13. Consider the reaction $C(s) + 2 H_2(g) \rightarrow CH_4(g)$
 - a) Using the data in your textbook, calculate ΔH° and ΔS° for the reaction at 298 K.
 - b) Estimate ΔG° for the reaction at 400K. (is the reaction more or less spontaneous at high temperature?)

-42.3 kJ (less spontaneous at high Temp)

The following are multiple choice questions

14. Melting of a solid is an example of a process for which

(A) Δ H, Δ S, and Δ G are positive at all temperatures. (B) Δ H and Δ S are positive.

(C) ΔG is negative at low temperatures, positive at high temperatures. (D) $\Delta H = \Delta S$

15. For the following process: $2Cl(g) \rightarrow Cl_2(s)$

(A) ΔH is + and ΔS is + for the reaction. (B) ΔH is - and ΔS is - for the reaction.

(C) ΔH is + and ΔS is – for the reaction. (D) ΔH is – and ΔS is + for the reaction.

(E) ΔG is + for all temperatures

16. A reaction is nonspontaneous at all temperatures if

(A) ΔH and ΔS are both positive. (B) ΔH and ΔS are both negative.

(C) \triangle H is positive and \triangle S is negative. (D) \triangle H is negative and \triangle S is positive.