
Rational Functions

1 Introduction

A rational function is a fraction with variables in its denominator, and usually in its numerator as well.

2 Vertical asymptotes

An asymptote is a line to which a curve gets closer and closer as x approaches a certain value or as x goes
to infinity or negative infinity.

Consider the function R(x) = 1/x.

y = 1/x

Because the denominator contains a variable, it can equal zero. Where that happens, the function is
undefined. Near that point, the y-value becomes indefinitely large (in absolute value). The line x = 0 which
the curve approaches but never reaches, is a vertical asymptote. Values to the left of this asymptote are
negative and those to the right are positive. That is, the function changes sign as it passes x = 0. That is
because x – which is the whole denominator – changes sign at that point.

Now consider the function R(x) = 1/x2.
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y = 1/x2

The most striking difference between the graph of 1/x2 and that of 1/x is that for 1/x2 all y-values are
positive or zero. That is because x2, unlike x, is always positive or zero, so as the function passes x = 0
there is no change in sign – only a vertical asymptote.

What happens to the graph of a rational function as the power of x in the denominator goes up?

y = 1/x3 y = 1/x4

The function’s sign changes at the asymptote if the power of x there is odd, but not if it’s even. That’s
because the sign of xn changes at the asymptote if n is odd, but not if it’s even. You may want to play with
this on a graphing calculator to verify that it works no matter how high n gets, as long as n is a positive
integer.

3 Horizontal and slant asymptotes

3.1 Horizontal asymptotes

Some rational functions approach horizontal asymptotes as x gets more extreme, positive or negative. Which
functions do that, and at what y-values do the asymptotes occur?
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3.1.1 Case 1: The degree of the numerator is less than the degree of the denominator.

As you can see from the graphs above, the graph of 1 divided by x to a power goes to zero as x goes to
extremes. (It is assumed that the power is a positive integer.) If you multiply the numerator by any constant
(a number that does not contain a variable), you’ll see that the graph of any number divided by x to a power
goes to zero as x goes to extremes. A rational function in which the degree of the numerator is
less than the degree of the denominator has a horizontal asymptote in which y=0.

3.1.2 Case 2: The degree of the numerator equals the degree of the denominator.

For this case, consider a complicated rational function like R(x) = 2x4+4x2+2
3x4+4x3+1 . To get a picture of what

happens to this function as x goes to extremes, multiply both numerator and denominator by 1
x4 :

R(x) =
2x4· 1

x4 +4x2· 1
x4 +2· 1

x4

3x4· 1
x4 +4x3· 1

x4 +1· 1
x4

Carry out all those multiplications and you get:

R(x) =
2+ 4

x2 + 2
x4

3+ 4
x+ 1

x4

Except for the 2 in the numerator and the 3 in the denominator, all the terms in the numerator and
denominator are rational functions in which the degree of the numerator is less than that of the denominator
– and, as established above, as x goes to extremes these terms all go to zero. Then the function itself is equal
to what’s left: 2

3 . A rational function in which the degree of the numerator equals the degree of
the denominator has a horizontal asymptote in which y equals the quotient of the coefficients
of the leading terms of numerator and denominator. (It is assumed that the terms are arranged in
order of decreasing degree.)

3.2 Slant asymptotes: The degree of the numerator is one more than the degree
of the denominator.

Consider the rational function y = 3x2−2x+1
x−1 . You can treat this function as the division problem that it is.

Carry out the division and you get 3x2−2x+1
x−1 = 3x+ 1, r2 or 3x2−2x+1

x−1 = 3x+ 1 + 2
x−1 . What happens to this

function as x changes? As x becomes extreme in either direction, positive or negative, 2
x−1 becomes smaller

and the function’s value gets closer to the line 3x + 1. y = 3x + 1 a slant asymptote for this function.
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y = 3x2−2x+1
x−1

Just as 2
x−1 becomes smaller at extremes of x, so it becomes large in absolute value near the x-value

where the denominator equals zero, at the vertical asymptote. The function’s y-value is farthest from the
slant asymptote where the x-value is near the vertical asymptote.

A slant asymptote occurs in a rational expression where the degree of the numerator is
one more than the degree of the denominator. To find the slant asymptote, treat the rational
function like a division problem and carry out the division. The slant asymptote is the quotient,
not including the remainder.

4 Zeros

The x-value of an x-intercept is called a zero. In other words, a zero is an x-value at which y=0.

Consider the function R(x) = x
2x5+3x4−4x3+x−3 . Where does that function have a zero?

The graph crosses the x-axis where its y-value is zero. No matter how messy the denomimator, the
y-value of a rational expression in simplest form is zero when and only when the expression’s numerator
is equal to zero. That means that as long as there are no common factors between the numerator and
the denominator, you need not worry about the denominator when you are looking for zeros; just set the
numerator equal to zero. For this example, that means there is a zero where x = 0.
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y = x
2x5+3x4−4x3+x−3

The numerator of any rational expression is a polynomial. According to the factor theorem, if a polyno-
mial has a rational factor x− c, then it has a zero at x = c.

Consider the rational function R(x) = (x+1)(x−2)(x−3)2

(x−1)(x−2)(x−4)2 .

To find this function’s zeros, put it in simplest form; that is, cancel any factors that are common to the
numerator and the denominator. For this function that’s just x− 2.

R(x) = (x+1)(x−3)2

(x−1)(x−4)2

Regardless of what’s left in the denominator, the function’s zeros happen at x-values where the numerator
equals zero:

x + 1 = 0 x− 3 = 0
x = −1 x = 3

The function R(x) = (x+1)(x−2)(x−3)2

(x−1)(x−2)(x−4)2 has zeros at x = −1 and x = 3.

4.1 Touching and crossing the x-axis

At a zero – that is, a place where y = 0 – the graph may either cross the x− axis or just touch it, kind of
bounce off of it.

Why touch at some zeros and cross at others? Consider again the simplified rational function R(x) =
(x+1)(x−3)2

(x−1)(x−4)2 , which, as shown above, as zeros at x = −1 and x = 3. Note that the factor x + 1 shows up just

once in the numerator. As the value of x goes from less than −1 to greater than −1, x + 1 changes from
negative to positive and the function’s sign changes. Thus the graph crosses the x−axis at this point. On
the other hand, the factor x − 3 shows up twice – it’s squared. As the value of x goes from less than 3 to
greater than 3, (x−3)2 goes from positive to zero to positive. It touches the x− axis at x = 3. Generally, a
rational function’s graph crosses the x-axis at a zero that corresponds to a factor that has an
odd multiplicity – that is, that occurs an odd number of times in the numerator. A rational function
touches the x-axis at a zero that corresponds to a factor that has an even multiplicity – that
is, that occurs an even number of times in the numerator.

5 Transformations

Consider the rational function R(x) = 1/(x − 2). That looks a lot like R(x) = 1/(x) above, but for the 2
that gets subtracted from x in the denominator. What is the effect of that change? To explore, set up a
table and compare values.

;
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x R(x)=1/x x-2 S(x)=1/(x-2)

-3 −1/3 -5 −1/5
-2 −1/2 -4 −1/4
-1 −1 -3 −1/3
0 undefined -2 −1/2
1 1 -1 -1
2 1/2 0 undefined
3 1/3 1 1

;

;

Note that R(x) = 1/x and S(x) = 1/(x− 2) take on the same y-values, in the same sequence – but S(x)
takes those values 2 units to the right of where R(x) takes them. Thus the curve for S(x), which contains
the term x− 2 in its denominator, falls 2 units to the right of the curve for R(x).

R(x) = 1
x S(x) = 1

x−2

Students often find it counterintuitive that subtracting a number from x causes the graph to move to
the right. Since you’re subtracting, shouldn’t it move to the left? There are a couple of ways to think about
this.

At any value of x the graph of y = 1
x−2 is doing at what the graph of y = 1

x is doing 2 units back. So at,

for example, x = 3, the graph of y = 1
x−2 is doing what the graph of y = 1

x is doing at x = 3− 2 = 1. That

has the effect of pushing the graph of y = 1
x−2 forward 2 units.

Another way to look at it: For every value of x, y = 1
x + 2 is 2 units higher than y = 1

x Why? Because
you just added 2 to the opposite side of the equation. Shouldn’t it work the same way for x? Let’s solve for
x in both y = x and y = 1/x and see what that looks like:

y = 1
x y = 1

x−2

x = 1
y x− 2 = 1

y

x = 1
y + 2

So subtracting 2 from x does indeed have the effect of adding 2 to each x-value.
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6 Sign

As you’ll see below, sign is an important clue in graphing rational functions. Let’s consider sign and how it

changes for one rational function, R(x) = (x+1)(x−2)(x−3)2

(x−1)(x−2)(x−4)2 , which we looked at in section 4, Zeros.

Note that in a rational function, sign changes only at zeros and vertical asymptotes, and not even all of
those.

In simplest form, R(x) = (x+1)(x−3)2

(x−1)(x−4)2 .

6.0.1 Zeros

Sign changes where a function crosses the x-axis. That includes every zero in the numerator with an odd
multiplicity. For this function that’s just x = −1.

6.0.2 Vertical asymptotes

The simplified function R(x) = (x+1)(x−3)2

(x−1)(x−4)2 has vertical asymptotes at the two x-values where the denomi-

nator equals zero: x = 1 and x = 4. But sign changes only at x = 1, corresponding to the factor x−1, which
is in the denominator an odd number of times (just once). Because the factor x − 4 occurs to the second
power in the denominator, the function’s sign does not change at x = 4.

6.0.3 Putting it together

Below are the places where the function changes sign and the intervals where sign is constant.

x-value x < −1 x = −1 −1 < x < 1 x = 1 1 < x < 3 x = 3 3 < x < 4 x = 4 x > 4
y-value 0 undefined 0 undefined

Because the function does not change sign anywhere else, once you find the function’s sign between the
places where it does change – zeros and vertical asymptotes – you know the sign everywhere in the function’s
domain.

What sign does the function take in each interval?

To find the sign within an interval, you can evaluate the function at any point in the interval or you
can evaluate the sign of each factor in the numerator and each factor in the denominator. If the number of
negative factors is odd, the function is negative; if the number of negative factors is even, the function is
positive.

Consider the left-most interval, where x < −1. The terms x − 1 (in the numerator) and x + 1 (in the
denominator) are both negative in this interval. The other two terms, (x − 3)2 and (x − 4)2, are positive,
because square terms can only be positive or zero, and these are not zero here. In fact, these terms are never
negative, so except where they equal zero we can ignore their effect on the function’s sign. In the left-most
interval, the function is a negative number divided by a negative number, and the result is positive.
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x-value x < −1 x = −1 −1 < x < 1 x = 1 1 < x < 3 x = 3 3 < x < 4 x = 4 x > 4
y-value + 0 undefined 0 undefined

Now consider the next interval to the right, −1 < x < 1. In the last interval, to the left of zero, x+ 1 was
negative. Now it has become positive. That leaves one negative, x− 1, in the function, making it negative.

x-value x < −1 x = −1 −1 < x < 1 x = 1 1 < x < 3 x = 3 3 < x < 4 x = 4 x > 4
y-value + 0 − undefined 0 undefined

At x = 1, the function is undefined because its denominator equals zero.

To the right of x = 1, no terms change sign in either the function’s numerator or its denominator, so the
function does not change sign to the right of x = 1.. Except where its value is zero (at x = 3) or is undefined
(at x = 4,) a vertical asymptote, the function is positive everywhere to the right of x = 1.

x-value x < −1 x = −1 −1 < x < 1 x = 1 1 < x < 3 x = 3 3 < x < 4 x = 4 x > 4
y-value + 0 − undefined + 0 + undefined +

7 Graphing

Let’s continue with the same example from earlier sections, R(x) = (x+1)(x−2)(x−3)2

(x−1)(x−2)(x−4)2 .

These are the things you can look at to get the picture:

• sign as it changes through the intervals;

• vertical asymptotes;

• end behavior, including horizontal and slant asymptotes, or what happens when there is no horizontal
or slant asymptote;

• y-intercept;

• x-intercepts;

• holes;

• some other points;

We’ll work with the simplified form of the function but keep in mind that it is the simplified form – the
part that got lost in the simplification will create a hole.

As shown above, the simplified form of the function is R(x) = (x+1)(x−3)2

(x−1)(x−4)2 .

7.1 Sign

Start the graph by indicating the signs that the function takes across its domain.
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7.2 Vertical asymptotes

There are vertical asymptotes where the denominator of the simplified expression equals zero.

R(x) = (x+1)(x−3)2

(x−1)(x−4)2

There are vertical asymptotes at x=1 and at x=4. The asymptote at x = 1 comes from a factor
whose multiplicity, 1, is odd, so the graph goes in opposite directions on opposite sides of the asymptote
(to negative infinity on the left and positive infinity on the right), per the sign diagram in section 6; the
asymptote at x = 3 comes from a factor whose multiplicity, 2, is even, so it goes in the same direction (to
positive infinity) on both sides.

7.3 End behavior

To explore end behavior, compare the degree of the numerator with that of the denominator. In the

rational function R(x) = (x+1)(x−3)2

(x−1)(x−4)2 , both numerator and denominator have degree 3. When the degrees of

numerator and denominator are equal, there is a horizontal asymptote in which y is equal to the quotient
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of the coefficients of numerator and denominator. In this case, both numerator and denominator have an
implied quotient of 1, so the horizontal asymptote is y=1.

7.4 y-intercept

The y-intercept is the point at which x = 0. To find it, substitute 0 for x in the function’s equation.

R(x) = (x+1)(x−3)2

(x−1)(x−4)2

R(0) = (0+1)(0−3)2

(0−1)(0−4)2

R(0) = (1)(−3)2

(−1)(−4)2

R(0) = 9
−16 = − 9

16

The y-intercept is at (0, -9/16).
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7.5 x-intercepts

See the section on ”zeros,” above. An x-intercept is just another name for a zero. Because we’re given this
function in factored form, the zeros are easy to find: Each x-value at which a factor equals zero is a zero.
The zeros are x=-1 and x=3.

7.6 Holes

A function has a hole at an x-value where the denominator is zero in the function’s original, unsimplified
form but not in the simplified form. At a hole, the canceled term makes the function undefined; everywhere
else, the simplified function is the same as the original function.

In the original function, R(x) = (x+1)(x−2)(x−3)2

(x−1)(x−2)(x−4)2 , the term x − 2 shows up in both the numerator and

the denominator. x− 2 = 0 when x = 2, so there is a hole at x = 2.

What is the hole’s y-value? In the simplified form of the equation, R(x) = (x+1)(x−3)2

(x−1)(x−4)2 , R(2) =
(2+1)(2−3)2

(2−1)(2−4)2 = 3
4 .

The hole is at (2, 3/4).

7.7 Points

How many points do you need to sketch a graph? Different instructors have different requirements, and
it really depends on how exact your graph needs to be. My personal advice would be to shoot for one
representative point in each interval.

7.7.1 Sketching

Time to put together all the information you’ve gathered. Start by graphing the asymptotes. That will give
you a framework. Add the points you’ve got.

y = (x+1)(x−2)(x−3)2

(x−1)(x−2)(x−4)2

11



8 Solving Rational Equations

Consider the rational equation 3
x+1 = 2

x−1 + 2
(x+1)(x−1) . How would you go about solving it?

What makes this equation complicated is the rational expression format – in other words, it has de-
nominators. Multiply both sides by the least common multiple of the denominators to make them go away.
That’s called clearing the fractions.

3
x+1 = 2

x−1 + 2
(x+1)(x−1)

3(x− 1) = 2(x + 1) + 2
3x− 3 = 2x + 2 + 2

x = 7

When you clear the fractions, you lose information. A rational expression is undefined anyplace its
denominator is zero. Multiplying by the denominators does not change the domain, but it hides the domain
constraint. Because domain information is now hidden, you need to check answers to make sure they do not
take you into undefined oblivion. What does that look like? Consider this example:

3x2

x+1 = 2x2−4x+2
x−1 + 3

x+1

Multiply by the least common multiple of the denominators:

(x + 1)(x− 1) · 3x2

x+1 = (x + 1)(x− 1) · 2x
2−4x+2
x−1 + (x + 1)(x− 1) · 3

x+1

(x− 1) · (3x2) = (x + 1) · (2x2 − 4x + 2) + (x− 1) · 3
3x3 − 3x2 = 2x3 − 2x2 − 2x + 2 + x− 1

x3 − x2 − x + 1 = 0
x2(x− 1)− 1(x− 1) = 0

(x2 − 1)(x− 1) = 0
x = −1, 1

Now check those answers in the original equation, 3x2

x+1 = 2x2−4x+2
x−1 + 3

x+1 :

For x = −1 For x = 1
3(−1)2

−1+1 = 2(−1)2−4(−1)+2
−1−1 + 3

−1+1
3·12
1+1 = 2·12−4·1+2

1−1 + 3
1+1

In each case there is a denominator equal to zero. Both roots are extraneous and the equation has no
solution.

9 Solving Rational Inequalities

Consider an inequality related to one of the rational equations we’ve already looked at: 3
x+1 > 2

x−1 +
2

(x+1)(x−1) . For the equation, the first step was to multiply by the denominators. For the inequality, you

can’t that; in an inequality, when you multiply by a negative number, you switch the direction of the
inequality sign – but the denominators change sign, so changing the direction of the inequality side is tricky.
You need a different strategy.
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It is easier to compare a quantity to zero than to compare it to a different number. Subtract from both
sides of the equation everything that is on the left-hand side, and you will be comparing a rational expression
to zero:

3
x+1 > 2

x−1 + 2
(x+1)(x−1)

0 > 2
x−1 + 2

(x+1)(x−1) −
3

x+1
2

x−1 + 2
(x+1)(x−1) −

3
x+1 < 0

That last step is just to get to the more familiar format of having the zero on the right and everything
else on the left.

To compare the left-hand side of the inequality to zero is to determine whether it is positive, negative,
or zero. To do that, find the places where the expression is zero or changes sign. Between those places, the
expression will be either consistently positive or consistently negative.

Where can sign changes happen? At asymptotes and zeros.

The function 2
x−1 + 2

(x+1)(x−1) −
3

x+1 has asymptotes where at least one of its denominators equals zero:

at x = −1 and x = 1. (This approach to finding asymptotes works only for expressions in simplest form.)
Let’s put that into a table:

x-value x < −1 x = −1 −1 < x < 1 x = 1 1 < x < 7 x = 7 x > 7
y-value undefined undefined

For what value or values of x is 2
x−1 + 2

(x+1)(x−1) −
3

x+1 equal to zero? To find it or them, rewrite the

expression with a common denominator and set it equal to zero:

2
x−1 + 2

(x+1)(x−1) −
3

x+1 = 0
2·(x+1)+2−3(x−1)

(x−1)(x+1) = 0

The expression equals zero when its numerator equals zero:

2x + 2 + 2− 3x + 3 = 0
x = 7

So there is a zero at x = 7.

x-value x < −1 x = −1 −1 < x < 1 x = 1 1 < x < 7 x = 7 x > 7
y-value undefined undefined 0

Now find the sign in the remaining intervals. To find the sign where x < −1, substitute into the expression
what you think is likely the easiest number less than -1 for which to calculate the function. I think the easiest
number will be -2.

2
x−1 + 2

(x−1)(x+1) −
3

x+1
2

−2−1 + 2
(−2−1)(x+1) −

3
−2+1

− 2
3 + 2

3 + 3 = 3
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That’s a positive result, so the expression is positive for x values less than 1:

x-value x < −1 x = −1 −1 < x < 1 x = 1 1 < x < 7 x = 7 x > 7
y-value + undefined undefined 0

Next consider the interval between -1 and 1. Zero looks like a convenient number:

2
x−1 + 2

(x−1)(x+1) −
3

x+1
2

0−1 + 2
(0−1)(0+1) −

3
0+1

−2− 2− 3 = −7

That’s a negative result, so the expression is negative for x values between -1 and 1:

x-value x < −1 x = −1 −1 < x < 1 x = 1 1 < x < 7 x = 7 x > 7
y-value + undefined − undefined 0

Next consider the interval between x = 1 and x = 7. Try x = 2 :

2
x−1 + 2

(x−1)(x+1) −
3

x+1
2

2−1 + 2
(2−1)(2+1) −

3
2+1

2 + 2
3 − 1 = 5

3

That’s a positive result, so the expression is positive for x values between 1 and 7:

x-value x < −1 x = −1 −1 < x < 1 x = 1 1 < x < 7 x = 7 x > 7
y-value + undefined − undefined + 0

Finally, consider numbers greater than 7. Try 8:

2
x−1 + 2

(x−1)(x+1) −
3

x+1
2

8−1 + 2
(8−1)(8+1) −

3
8+1

2
7 + 2

63 −
3
9

18
63 + 2

63 −
21
63 = − 1

63

That’s a negative answer, so 2
x−1 + 2

(x−1)(x+1) −
3

x+1 is negative everywhere to the right of 7.

x-value x < −1 x = −1 −1 < x < 1 x = 1 1 < x < 7 x = 7 x > 7
y-value + undefined − undefined + 0 −

The original problem was the solve the inequality 3
x+1 > 2

x−1 + 2
(x+1)(x−1) , which, we found, is equivalent

to 2
x−1 + 2

(x+1)(x−1) −
3

x+1 < 0. The solution to this inequality is all values where the table shows a number

less than zero: (−1, 1) ∪ (7,∞).

Questions? Reach out to us at the lab: 703.450.2644 or LOMathCenter@nvcc.edu.
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