Interest

P: Principal (\$)
I: Interest (\$)

A: final, total Amount (\$) (note that A=P + I)
t: time (years)
r : annual interest rate (as a decimal)
n: the number of times the interest is compounded per year
(Note: e is a constant, approximately 2.71828)

Simple Interest	$I=P * r * t$ $A=P(1+r t)$
Compounded Interest	$A=P\left(1+\frac{r}{n}\right)^{n t}$
Continuously Compounded Interest	$\mathrm{A}=\mathrm{Pe} e^{r t}$

Note: the value of n is often determined by the frequency word used.

Yearly (annually):	$n=1$	Semi-annually:	$n=2$
Quarterly:	$n=4$	Bi-weekly:	$n=26$
Weekly:	$n=52$	Daily:	$n=365$

Example: Bobby wants to borrow $\$ 100,000$ to buy a house. How much will he pay in total for a 20 -year loan if the 4% interest is computed as:
a) simple interest; b) compounded monthly; c) compounded continuously?

Based on the wording: $\mathrm{P}=\$ 100,000 \mathrm{r}=0.04$ (4% as a decimal) $\mathrm{t}=20 \mathrm{n}=12$
a) Simple Interest: $\quad A=P(1+r t)$

$$
=\$ 100,000(1+0.04 * 20)=\$ 180,000
$$

b) Compounded Monthly: $\quad A=P\left(1+\frac{r}{n}\right)^{n t}$

$$
=\$ 100,000\left(1+\frac{0.04}{12}\right)^{20 * 12}=\$ 222,258.21
$$

c) Compounded Continuously: $A=P e^{r t}$

$$
=\$ 100,000 * e^{0.04 * 20}=\$ 222,554.09
$$

