MTH-154 - Working with Powers of 10

Exponential notation is a way of expressing a number in the form:
$\mathbf{a}^{\mathbf{n}}$ which means that we have \mathbf{n} factors of \mathbf{a} multiplied together.
For example, $5^{3}=5 \times 5 \times 5 \leftarrow 3$ factors of 5 .
Powers of 10: 10^{n} is a very important case of exponential notation because our number system is base-10. 10^{n} can be used to describe the place value of a digit in a number (see other side).

The base-10 system leads to these rules to move between powers of 10 and standard number format:

A positive exponent indicates the number of places to the right of the 1 (fill with 0 's).

Ex: $10^{5}=100,000$.
Take note: $10^{0}=1$ (zero 0's after the 1)

A negative exponent indicates the number of places to the right of the decimal point, including the 1 (fill with 0 's).

Ex: $10^{-5}=0.00001$ பபபபப

Scientific notation makes use of the powers of 10 to provide a concise way to write and work with very large and/or very small numbers. The number is expressed as the digits \times a power of 10 .

$$
\text { Examples: } \begin{aligned}
-6,400,000 & =-6.4 \times 10^{6} \\
\text { number } & =\text { digits } \times \text { power of } 10
\end{aligned}
$$

$0.00037=3.7 \times 10^{-4}$
number $=$ digits \times power of 10

Powers of 10 are in exponential notation, so here is a refresher on:

Rules of Exponents for Powers of 10:

To multiply powers of 10,	To divide powers of 10, subtract the exponents:
add the exponents:	$10^{7} \div 10^{4}=10^{7-4}=10^{3}$
$10^{7} \times 10^{4}=10^{7+4}=10^{11}$	$10^{2} \div 10^{6}=10^{2-6}=10^{-4}$
$10^{-6} \times 10^{4}=10^{-6+4}=10^{-2}$	$10^{7} \div 10^{7}=10^{7-7}=10^{0}=1$
$10^{-3} \times 10^{3}=10^{-3+3}=10^{0}=1$	To add or subtract powers of 10,
first convert the numbers to standard form.	
To raise a power of 10 to a power,	$10^{4}+10^{2}=1000+100=1010$
multiply the exponents:	
$\left(10^{3}\right)^{4}=10^{3 \times 4}=10^{12}$	

NOVA Loudoun Math Lab Summary Notes:
MTH-154 - Ways to Describe Powers of 10

Place Value	Power of 10	Standard Form	Fractional Form	Excel or Calculator entry
trillion	10^{12}	1,000,000,000,000	$\frac{1000000000000}{1}$	1E12
hundred billion	10^{11}	100,000,000,000	$\frac{100000000000}{1}$	1E11
ten billion	10^{10}	10,000,000,000	$\frac{10000000000}{1}$	1E10
billion	10^{9}	1,000,000,000	$\frac{1000000000}{1}$	1E9
hundred million	10^{8}	100,000,000	$\frac{100000000}{1}$	1E8
ten million	10^{7}	10,000,000	$\frac{10000000}{1}$	1E7
million	10^{6}	1,000,000	$\frac{1000000}{1}$	1E6
hundred thousand	10^{5}	100,000	$\frac{100000}{1}$	1E5
ten thousand	10^{4}	10,000	$\frac{10000}{1}$	1E4
thousand	10^{3}	1,000	$\frac{1000}{1}$	1E3
hundred	10^{2}	100	$\frac{100}{1}$	1E2
ten	10^{1}	10	$\frac{10}{1}$	1E1
one	10^{0}	1	$\frac{1}{1}$	1E0
tenth	10^{-1}	0.1	$\frac{1}{10}$	1E-1
hundredth	10-2	0.01	$\frac{1}{100}$	1E-2
thousandth	10^{-3}	0.001	$\frac{1}{1000}$	$1 \mathrm{E}-3$
ten-thousandth	10^{-4}	0.0001	$\frac{1}{10000}$	1E-4

Examples:

Four hundred thousand	$=4 \times 10^{5}$	$=4 \times 100,000$	$=400,000$	$=4 \mathrm{E} 5$
6.32 million	$=6.32 \times 10^{6}$	$=6.32 \times 1,000,000$	$=6,320,000$	$=6.32 \mathrm{E} 6$
seven hundredths	$=7 \times 10^{-2}$	$=7 \times 0.01$	$=0.07$	$=7 \mathrm{E}-2$
43 thousandths	$=43 \times 10^{-3}$	$=43 \times 0.001$	$=0.043$	$=43 \mathrm{E}-3$

