NOVA Loudoun Math Lab Summary Notes:

MTH-154 – Working with Powers of 10

Exponential notation is a way of expressing a number in the form:

aⁿ which means that we have **n** factors of **a** multiplied together. For example, $5^3 = 5 \times 5 \times 5 \leftarrow 3$ factors of 5.

Powers of 10: 10ⁿ is a very important case of exponential notation because our number system is base-10. 10ⁿ can be used to describe the place value of a digit in a number (see other side).

TTI 10	1	1			
The base-10 system	leads to these r	ules to move bet	tween powers of I	LU and standard	number format:

A positive exponent indicates the number of places to the right of the 1 (fill with 0's). Ex: $10^5 = 100,000$.	A negative exponent indicates the number of places to the right of the decimal point, <i>including</i> the 1 (fill with 0's).	
Take note: $10^0 = 1$ (zero 0's after the 1)		

Scientific notation makes use of the powers of 10 to provide a concise way to write and work with very large and/or very small numbers. The number is expressed as the digits × a power of 10.

Examples:	$-6,400,000 = -6.4 \times 10^{6}$	$0.00037 = 3.7 \times 10^{-4}$		
	number = digits \times power of 10	number = digits \times power of 10		

Powers of 10 are in *exponential notation*, so here is a refresher on:

Rules of Exponents for Powers of 10:

To multiply powers of 10,	To divide powers of 10,	
<i>add</i> the exponents:	<i>subtract</i> the exponents:	
$10^{7} \times 10^{4} = 10^{7+4} = 10^{11}$ $10^{-6} \times 10^{4} = 10^{-6+4} = 10^{-2}$ $10^{-3} \times 10^{3} = 10^{-3+3} = 10^{0} = 1$	$10^{7} \div 10^{4} = 10^{7-4} = 10^{3}$ $10^{2} \div 10^{6} = 10^{2-6} = 10^{-4}$ $10^{7} \div 10^{7} = 10^{7-7} = 10^{0} = 1$	
To raise a power of 10 to a power,	To add or subtract powers of 10,	
multiply the exponents:	first convert the numbers to <i>standard form</i> .	
$(10^3)^4 = 10^{3 \times 4} = 10^{12}$	$10^4 + 10^2 = 1000 + 100 = 1010$	

NOVA Loudoun Math Lab Summary Notes: MTH-154 – **Ways to Describe Powers of 10**

Place Value	Power of 10	Standard Form	Fractional Form	Excel or Calculator entry
trillion	1012	1,000,000,000,000	1000000000000000000000000000000000000	1E12
hundred billion	1011	100,000,000,000	$\frac{10000000000}{1}$	1E11
ten billion	1010	10,000,000,000	$\frac{1000000000}{1}$	1E10
billion	109	1,000,000,000	$\frac{1000000000}{1}$	1E9
hundred million	108	100,000,000	$\frac{100000000}{1}$	1E8
ten million	107	10,000,000	$\frac{10000000}{1}$	1E7
million	106	1,000,000	$\frac{1000000}{1}$	1E6
hundred thousand	105	100,000	$\frac{100000}{1}$	1E5
ten thousand	104	10,000	$\frac{10000}{1}$	1E4
thousand	10 ³	1,000	$\frac{1000}{1}$	1E3
hundred	102	100	$\frac{100}{1}$	1E2
ten	101	10	$\frac{10}{1}$	1E1
one	10º	1	$\frac{1}{1}$	1E0
tenth	10-1	0.1	$\frac{1}{10}$	1E-1
hundredth	10-2	0.01	$\frac{1}{100}$	1E-2
thousandth	10-3	0.001	$\frac{1}{1000}$	1E-3
ten-thousandth	10-4	0.0001	$\frac{1}{10000}$	1E-4

Examples:

Four hundred thousand	$= 4 \ge 10^{5}$	= 4 x 100,000	= 400,000	= 4E5
6.32 million	$= 6.32 \text{ x } 10^{6}$	= 6.32 x 1,000,000	= 6,320,000	= 6.32E6
seven hundredths	$= 7 \ge 10^{-2}$	$= 7 \ge 0.01$	= 0.07	= 7E-2
43 thousandths	$= 43 \times 10^{-3}$	$= 43 \ge 0.001$	= 0.043	= 43E-3