Factor Theorem and Remainder Theorem

Factor Theorem

The factor theorem applies to polynomial functions and states that:

- If $x-c$, where c is some real number, is a factor of $f(x)$, then c is a solution to $f(x)=0$ and
- If c is a solution to $f(x)=0$, then $x-c$ is a factor of $f(x)$.

The factor theorem is really just an extension of the factoring method for solving quadratic equations. Let's apply it to a quadratic equation.

Example

Solve the equation $x^{2}+3 x+2=0$ by factoring.

The factors of $x^{2}+3 x+2$ are $x+1$ and $x+2$. Their product can equal zero only if at least one of them equals zero. Therefore the equation $x^{2}+3 x+2=0$ has two zeros, one for each factor:

$x+1=0$	$x+2=0$
$x=-1$	$x=-2$

So the solution to is $x^{2}+3 x+2=0$ is $x=-1$ and $x=-2$.

The last step uses the first bullet of the remainder theorem as stated above. For example, in the case of $x+1=0, c=-1$ and -1 is a solution to $x^{2}+3 x+2=0$.

But not every polynomial is just a quadratic. Let's try this with a longer polynomial function: $g(x)=x^{3}+2 x^{2}-x-2$. See its graph at left. From the graph, you can see that $y=0$ where $x=-2,-1$, and 1 , so the solutions to $g(x)=x^{3}+2 x^{2}-x-2$ are $x=-2, x=-1$, and $x=1$. And the factors of $x^{3}+2 x^{2}-x-2$ are $x+2, x+1$, and $x-1$. That illustrates the second bullet of the
factor theorem as stated above: If c is a solution to $f(x)=0$, then $x-c$ is a factor of $f(x)$.

Remainder Theorem

But not every polynomial can be factored. Consider the polynomial $h(x)=x^{3}+2 x^{2}-x$. That's a vertical shift of $g(x)=x^{3}+2 x^{2}-x-2$ two units upward. $h(x)$ doesn't factor, so you can't solve it with the factor theorem. And those nice integer zeros that we had for $x^{3}+2 x^{2}-x-2=0$ are no longer zeros. Since 2 has been added to the function's every y-value, those x-values that used to be zeros now have a y-value of 2 .

The function $h(x)=x^{3}+2 x^{2}-x$ graphs like this:

The blue curve is the transformed function, $h(x)=x^{3}+2 x^{2}-x$, and the gray curve is the original function, $g(x)=x^{3}+2 x^{2}-x-2$, thrown in for reference.

Our nice zeros from before are gone, but the x-values that had them now have nice y-values of 2. If you divide $h(x)=x^{3}+2 x^{2}-x$ by any of the factors of $g(x)--2,-1$, or $1--$ you will get a
 remainder of 2 . That's because $g(x)$ is divisible by those factors and the value of $h(x)$ at those points is 2 more.

The remainder theorem says that if you divide a polynomial function by a factor $x-c$ you will get a remainder that is equal to the value of the function at point c.

To use the remainder theorem to find the remainder when a polynomial is divided by a binomial $x-c$, evaluate the function at that point. Consider our example $h(x)=x^{3}+2 x^{2}-x$. To find the remainder when $h(x)$ is divided by $x-1$, evaluate the function at $x=1$. That's $1^{3}+2 \cdot 1^{2}-1=2$, so the remainder you are looking for is 2 . Yes, you could have found that result by division, but then you would not have been using the remainder theorem.

To use the remainder theorem to find the value of a polynomial function at a point c, divide the polynomial by $x-c$. The remainder is the value of the function at point c. If the remainder is zero, the polynomial is divisible by $x-c$ and c is a zero of the function.

