Transformation Rules for Functions

A Single Transformation

Transforming equation $y=f(x)$

Equation
$y=f(x)+k(k>0)$
$y=f(x)+k(k<0)$
$y=f(x-h)(h>0)$
$y=f(x-h)(h<0)$
$y=-f(x)$
$y=f(-x)$
$y=a f(x)(a>1)$
$y=a f(x)(0<a<1)$
$y=f(b x)(b>1)$
$y=f(b x)(0<b<1)$

How to obtain the graph

Shift graph $y=f(x)$ up k units.
Shift graph $y=f(x)$ down k units.
Shift graph $y=f(x)$ right h units.
Shift graph $y=f(x)$ left h units.
Reflect graph $y=f(x)$ over x-axis.
Reflect graph $y=f(x)$ over y-axis.
Stretch graph $y=f(x)$ vertically by factor of a. (Multiply y-coordinates of $y=f(x)$ by a.)
Shrink graph $y=f(x)$ vertically by factor of a. (Multiply y-coordinates of $y=f(x)$ by a.)

Shrink graph $y=f(x)$ horizontally by factor of $1 / b$. (Divide x-coordinates of $y=f(x)$ by b.)
Stretch graph $y=f(x)$ horizontally by factor of $1 / b$.
(Divide x-coordinates of $y=f(x)$ by b.)

A Series of Transformations

Combining transformations can be tricky, because the order in which you carry them out may matter. (There are times when it does not make a difference -- and finding those situations can lull you into complacency.) Remember that a combination of

NOVA Loudoun Math Lab

transformations is a series of things that are being done to x. If you double a number and then add 3 , you will most likely get a different result than you will if you add 3 to a number and then double it.

What is the right sequence? Start close to x and work your way out.
Example: $f(x)=3 \sin (2(x-\pi / 6))+1$.

1. Start with the parent function: $y=\sin x$.

2. What's the first thing you do to x ? Subtract $\frac{\pi}{6}$ from it. So the first thing you do to the graph is to move it $\frac{\pi}{6}$ to the right and get the graph of $y=\sin \left(x-\frac{\pi}{6}\right)$

3. Next, multiply $x-\pi / 6$ by 2 to get $y=\sin (2(x-\pi / 6))$. On the graph that's a horizontal compression or, equivalently, moving along the x-axis twice as fast.

4. Next, $\sin (2(x-\pi / 6))$ gets multiplied by 3 . This stretches the graph vertically to three times its original height.

NOVA Loudoun Math Lab

5. Finally, 1 gets added to $3 \sin (2(x-\pi / 6))$ and the final equation is $y=3 \sin (2(x-\pi / 6))+1$. This raises the graph 1 unit.

Discussion

Did I mention that the sequence in which you do the steps can be important? Let's consider a couple of places where it is:

- Step 4 is a vertical tripling and step 5 raises the whole graph by 1 . What if we first raise the whole graph by 1 and then triple vertically?
- Where we were after step 3:

- Then we raise the graph by 1 :

NOVA Loudoun Math Lab

- Then we triple vertically:

Compare that with the result we got when we tripled vertically first and then added 1. Different. When we added 1 before tripling, we included the 1 in the tripling, so we tripled higher numbers -- and ended up with higher numbers. Tripling after adding increased what was added.

- Another example: Step 2 is a horizontal shift and step 3 is a horizontal compression. What if we do the compression first and then the shift?
- Original graph:

- Graph after horizontal compression:

NOVA Loudoun Math Lab

- Graph after horizontal compression and then horizontal shift:

If sequence didn't matter, this graph would look the same as step 3 in the original sequence. But it does not; it is shifted (slightly) to the left.

Does This Make Sense?

Students sometimes feel that some aspects of transformations seem backwards. $f(x-h)$ is h units to the right of $f(x)$, even though you are subtracting h-- shouldn't subtraction move it left? And $g(2 x)$ is compressed from $g(x)$. Shouldn't multiplying by 2 stretch it out?

Horizontal translation Let's say $y=x+1$. This graph will be 1 unit higher than $y=x$, because we are adding 1 to every y-value. But what happens if we solve for $x: x=y-1$? Now it looks like adding 1 to $y=x$ to make it $y=x+1$ means making each x-value one less and thus moving it one unit to the left.

Another way to look at this: Consider $f(x)=x^{2}$ and $g(x)=(x-1)^{2}$. Let's look at some values:

\underline{x}	x^{2}	$\underline{x-1}$	$(x-1)^{2}$
-2	4	-3	9
-1	1	-2	4
0	0	-1	1
1	1	0	0

2	4	1	1

At $x=-1,(x-1)^{2}$ takes the value that $x-1$ takes at $x=-2$. In fact, at every x value, $(x-1)^{2}$ takes the value that x takes one unit earlier. That puts $y=(x-1)^{2}$ one unit ahead of $y=x^{2}$. So subtracting a number from x moves the graph ahead.

Horizontal compression and stretching. Consider the same function, $f(x)=x^{2}$. Let's say $g(x)=(2 x)^{2}$.

\underline{x}	$f(x)=x^{2}$	$\underline{2 x}$	$g(x)=(2 x)^{2}$
-4	16		
-3	9		
-2	4	-4	16
-1	1	-2	4
0	0	0	0
1	1	2	4
2	4	4	16
3	9		
4	$` 16$		

Notice that $f(2)=g(1)$ and $f(4)=g(2)$. This pattern continues: f of a number equals g of twice that number. In other words, g increases twice as fast as f-- so g moves along twice as fast and g 's graph is compressed compared with f 's.

