Transformation Rules for Functions

A Single Transformation

Transforming equation y = f(x)

Equation	How to obtain the graph
y = f(x) + k (k > 0)	Shift graph $y = f(x)$ up k units.
y = f(x) + k (k < 0)	Shift graph $y = f(x)$ down k units.
y = f(x - h) (h > 0)	Shift graph $y = f(x)$ right h units.
y = f(x - h) (h < 0)	Shift graph $y = f(x)$ left h units.
y = -f(x)	Reflect graph $y = f(x)$ over x-axis.
y = f(-x)	Reflect graph $y = f(x)$ over y-axis.
y = af(x) (a > 1)	Stretch graph $y = f(x)$ vertically by factor of a . (Multiply y -coordinates of $y = f(x)$ by a .)
y = af(x) (0 < a < 1)	Shrink graph $y = f(x)$ vertically by factor of a . (Multiply y -coordinates of $y = f(x)$ by a .)
y = f(bx) (b > 1) y = f(bx) (0 < b < 1)	Shrink graph $y = f(x)$ horizontally by factor of $1/b$. (Divide x -coordinates of $y = f(x)$ by b .) Stretch graph $y = f(x)$ horizontally by factor of $1/b$. (Divide x -coordinates of $y = f(x)$ by b .)

Putting it together

A Series of Transformations

Combining transformations can be tricky, because the order in which you carry them out may matter. (There are times when it does not make a difference -- and finding those situations can lull you into complacency.) Remember that a combination of

transformations is a series of things that are being done to x. If you double a number and then add 3, you will most likely get a different result than you will if you add 3 to a number and then double it.

What is the right sequence? Start close to x and work your way out.

Example: $f(x) = 3sin(2(x - \pi/6)) + 1$.

2. What's the first thing you do to x? Subtract $\frac{\pi}{6}$ from it. So the first thing you do to the graph is to move it $\frac{\pi}{6}$ to the right and get the graph of $y = sin\left(x - \frac{\pi}{6}\right)$

3. Next, multiply $x - \pi/6$ by 2 to get $y = sin(2(x - \pi/6))$. On the graph that's a horizontal compression or, equivalently, moving along the *x*-axis twice as fast.

4. Next, $sin(2(x - \pi/6))$ gets multiplied by 3. This stretches the graph vertically to three times its original height.

Discussion

Did I mention that the sequence in which you do the steps can be important? Let's consider a couple of places where it is:

• <u>Step 4</u> is a vertical tripling and <u>step 5</u> raises the whole graph by 1. What if we first raise the whole graph by 1 and then triple vertically?

7

Compare that with <u>the result we got when we tripled vertically first and then added 1</u>. Different. When we added 1 before tripling, we included the 1 in the tripling, so we tripled higher numbers -- and ended up with higher numbers. Tripling after adding increased what was added.

• Another example: <u>Step 2</u> is a horizontal shift and <u>step 3</u> is a horizontal compression. What if we do the compression first and then the shift?

• Graph after horizontal compression:

Does This Make Sense?

Students sometimes feel that some aspects of transformations seem backwards. f(x - h) is h units to the *right* of f(x), even though you are subtracting h -- shouldn't subtraction move it left? And g(2x) is compressed from g(x). Shouldn't multiplying by 2 stretch it out?

Horizontal translation Let's say y = x + 1. This graph will be 1 unit higher than y = x, because we are adding 1 to every y-value. But what happens if we solve for x: x = y - 1? Now it looks like adding 1 to y = x to make it y = x + 1 means making each x-value one less and thus moving it one unit to the left.

Another way to look at this: Consider $f(x) = x^2$ and $g(x) = (x - 1)^2$. Let's look at some values:

<u>x</u>	<i>x</i> ²	<u>x - 1</u>	$(x-1)^2$
-2	4	-3	9
-1	1	-2	4
0	0	-1	1
1	1	0	0

2	4	1	1

At x = -1, $(x - 1)^2$ takes the value that x - 1 takes at x = -2. In fact, at every x value, $(x - 1)^2$ takes the value that x takes one unit earlier. That puts $y = (x - 1)^2$ one unit ahead of $y = x^2$. So subtracting a number from x moves the graph ahead.

Horizontal compression and stretching. Consider the same function, $f(x) = x^2$. Let's say $g(x) = (2x)^2$.

<u>x</u>	$f(x) = x^2$	<u>2x</u>	$g(x) = (2x)^2$
-4	16		
-3	9		
-2	4	-4	16
-1	1	-2	4
0	0	0	0
1	1	2	4
2	4	4	16
3	9		
4	`16		

Notice that f(2) = g(1) and f(4) = g(2). This pattern continues: f of a number equals g of twice that number. In other words, g increases twice as fast as f -- so g moves along twice as fast and g's graph is compressed compared with f's.