$\qquad$
$\qquad$

## Unit 4 Module A Notes Sections 12.1-12.3

View the PowerPoint, Videos, or Textbook for Module 4A.

## Vocabulary Fill in the blanks.

1. (Section 12.1) The $\qquad$ principle states that for any real numbers $\boldsymbol{a}, \boldsymbol{b}$, and $\boldsymbol{c}, \boldsymbol{a}=\boldsymbol{b}$ is equivalent to $\boldsymbol{a}+\boldsymbol{c}=\boldsymbol{b}+\boldsymbol{c}$.
2. (Section 12.2) The $\qquad$ principle states that for any real numbers $\boldsymbol{a}, \boldsymbol{b}$, and $\boldsymbol{c}, \boldsymbol{c} \neq \mathbf{0}, \boldsymbol{a}=\boldsymbol{b}$ is equivalent to $\boldsymbol{a} \cdot \boldsymbol{c}=\boldsymbol{b}^{*} \boldsymbol{c}$.
3. (Section 12.2) The multiplicative $\qquad$ of 3 is $\frac{1}{3}$.
4. (Section 12.2) The multiplicative is 1 since $1 \cdot x=x$.
5. (Section 12.3) We multiply every term on both sides of an equation by the $\qquad$ of all denominators in order to clear fractions.
6. (Section 12.3) When solving an equation, if we end with a true equation, the equation has $a(n)$ number of solutions. If we end with a false equation the equation has solution.

## Problems Show ALL steps.

1. (Section 12.1) Solve $\boldsymbol{a}-\mathbf{1 1}=\mathbf{- 2 5}$
2. (Section 12.2) Solve $-3 x=33$

Name: $\qquad$
Date: $\qquad$
$\qquad$ Class Time: $\qquad$
3. (Section 12.2) Solve $\frac{\mathbf{5}}{\mathbf{2}} \boldsymbol{x}=\mathbf{1 5}$
4. (Section 12.3) Solve $\frac{\boldsymbol{x}}{2}-1=\frac{2}{3} \boldsymbol{x}-\mathbf{3}$
(Hint: Multiply by LCD)
5. (Section 12.3) Solve $-2(x-5)+10=-3(x+2)+x$
6. (Section 12.3) Suppose you have simplified several equations and obtain the following results. What can you conclude about the solutions to the original equation.
a. $7=7$
b. $x=0$
c. $7=-4$
a.
b. $\qquad$ c. $\qquad$

