Name: \qquad
\qquad
Date: \qquad
Unit 6 Module A Notes Sections 18.1 - 18.3; 18.7
View the PowerPoint, Videos, or Textbook for Module 6A.

Vocabulary Fill in the blanks.

1. (Section 18.1) An expression for a power is called \qquad
2. (Section 18.1) We often read x^{3} as \qquad .
3. (Section 18.2) \qquad for a number is an expression of the type $M \times 10^{n}$, where n is an integer, $1 \leq M<10$ and M is written as a decimal.
4. (Section 18.2) For any real number a and any integers m and $n,\left(a^{m}\right)^{n}=a^{m n}$. The previous statement represents the \qquad Rule.
5. (Section 18.3) \qquad have the same variable and the same exponent power.
6. (Section 18.3) The \qquad - \qquad
\qquad is the largest of the degrees of the terms, unless it is the polynomial 0 .

Problems Show ALL steps.

1. (Section 18.1) What is the meaning of the following?
$5 x^{4}$
2. (Section 18.1) $a^{0}=$ \qquad , for any nonzero number a.

Name: \qquad Instructor: \qquad
Date: \qquad Class Time: \qquad
3. Section (18.2) Simplify. Express the answer using positive exponents.
$\left(-3 x^{2} y^{-5}\right)^{-3}$
4. (Section 18.2) Convert the following to scientific notation.
a. 0.000517
b. $7,130,000$
5. (Section 18.3) Collect like terms and simplify, writing the final answer in descending order. $4 x^{2}+9-4 x+x^{2}-10+9 x^{3}-x$.
6. (Section 18.7) Complete the table below for the polynomial $4 x y^{3}+\frac{1}{4} w-9 z^{2}-8$.

Term	Coefficient	Degree of the Term	Degree of the Polynomial

7. (Section 18.7) Evaluate $-x y^{3}+x z^{4}-9$ when $x=-2, y=1$ and $z=-1$.
