	/10 /10 /10 /10 /10 /10 /10 /10 /10 /10
Unit (6 Module A Notes Sections 18.1 – 18.3; 18.7
View th	he PowerPoint, Videos, or Textbook for Module 6A.
Vocab	ulary Fill in the blanks.
1.	(Section 18.1) An expression for a power is called
2.	(Section 18.1) We often read x ³ as
	(Section 18.2) for a number is an expression of the type M x 10^n , where n is an integer, $1 \le M < 10$ and M is written as a decimal.
4.	(Section 18.2) For any real number a and any integers m and n, $(a^m)^n = a^{mn}$. The previous
	statement represents the Rule.
	(Section 18.3) have the same variable and the same exponent power.

6. (Section 18.3) The _____ is the largest of the degrees of the terms, unless it is the polynomial 0.

Problems Show ALL steps.

1. (Section 18.1) What is the meaning of the following?

5x⁴

2. (Section 18.1) $a^0 =$ ____, for any nonzero number a.

<u>Name</u> :	 		
Date: _			

<u>Instructor</u> : _	
Class Time:	

3. Section (18.2) Simplify. Express the answer using positive exponents.

$$(-3x^2y^{-5})^{-3}$$

- 4. (Section 18.2) Convert the following to scientific notation.
 - a. 0.000517 b. 7,130,000
- 5. (Section 18.3) Collect like terms and simplify, writing the final answer in descending order. $4x^2 + 9 - 4x + x^2 - 10 + 9x^3 - x$.

6. (Section 18.7) Complete the table below for the polynomial $4xy^3 + \frac{1}{4}w - 9z^2 - 8$.

Term	Coefficient	Degree of the Term	Degree of the Polynomial

7. (Section 18.7) Evaluate $-xy^3 + xz^4 - 9$ when x = -2, y = 1 and z = -1.