\qquad
\qquad
Unit 8 Module A Notes Sections 21.1-21.2
View the PowerPoint, Videos, or Textbook for Module 8A.

Vocabulary Fill in the blanks.

1. (Section 21.1) The $\sqrt{ }$ symbol is called a \qquad . The expression written under the $\sqrt{ }$ is called the \qquad .
2. (Section 21.1) The \qquad square root of a nonnegative number is its nonnegative square root.
3. (Section 21.1) The number c is the \qquad root of a if $c^{3}=a$.
4. (Section 21.1) In the expression $\sqrt[k]{a}$ we call k the \qquad and assume $k \geq 2$.
5. (Section 21.2) For any nonnegative real number a and any natural number index $n(n \neq 1)$ $a^{1 / n}$ means \qquad (the nonnegative $n^{\text {th }}$ root of a).
6. (Section 21.2) For any natural numbers m and n and any nonnegative real number a, \ldots means $(\sqrt[n]{a})^{m}$ or $\sqrt[n]{a^{m}}$.

Problems Show ALL steps.

1. (Section 21.1) If $g(x)=\sqrt{2 x+4}$ find:
a. The domain of g
b. $g(6)$

Name: \qquad Instructor: Class Time: \qquad
Date: \qquad
2. (Section 21.1) Find each of the following. Assume that variables can represent any real number.
a. $\sqrt{\frac{25}{64}}$
b. $\sqrt{9(y-1)^{2}}$
c. $\sqrt[3]{-64}$
d. $-\sqrt[7]{(x+5)^{7}}$
3. (Section 21.2) Rewrite without rational exponents and simplify: $125^{2 / 3}$
4. (Section 21.2) Use rational exponents to simplify: $\sqrt[6]{a^{3} b^{12}}$
5. (Section 21.2) Write as a single radical expression: $\frac{x^{3 / 2} y^{7 / 8}}{x^{3 / 4} y^{5 / 8}}$

