Name:	 	
Date:		

Unit 8 Module A Notes Sections 21.1 -21.2

View the PowerPoint, Videos, or Textbook for Module 8A.

Vocabulary Fill in the blanks.

- 1. (Section 21.1) The $\sqrt{}$ symbol is called a _____. The expression written under the $\sqrt{}$ is called the _____.
- 2. (Section 21.1) The ______square root of a nonnegative number is its nonnegative square root.
- 3. (Section 21.1) The number *c* is the _____ root of *a* if $c^3 = a$.
- 4. (Section 21.1) In the expression $\sqrt[k]{a}$ we call *k* the _____ and assume $k \ge 2$.
- 5. (Section 21.2) For any nonnegative real number *a* and any natural number index $n \ (n \neq 1)$ $a^{\frac{1}{n}}$ means _____ (the nonnegative n^{th} root of *a*).
- 6. (Section 21.2) For any natural numbers *m* and *n* and any nonnegative real number *a*, ______ means $\left(\sqrt[n]{a}\right)^m$ or $\sqrt[n]{a^m}$.

Problems Show ALL steps.

1. (Section 21.1) If $g(x) = \sqrt{2x+4}$ find: a. The domain of g b. g(6)

Name:	 	
Date:	 	

Instructor:	
Class Time:	

2. (Section 21.1) Find each of the following. Assume that variables can represent *any* real number.

a.
$$\sqrt{\frac{25}{64}}$$
 b. $\sqrt{9(y-1)^2}$

c.
$$\sqrt[3]{-64}$$
 d. $-\sqrt[7]{(x+5)^7}$

3. (Section 21.2) Rewrite without rational exponents and simplify:
$$125^{\frac{2}{3}}$$

4. (Section 21.2) Use rational exponents to simplify:
$$\sqrt[6]{a^3b^{12}}$$

5. (Section 21.2) Write as a single radical expression:
$$\frac{x^{\frac{3}{2}}y^{\frac{7}{8}}}{x^{\frac{3}{4}}y^{\frac{5}{8}}}$$