\qquad
\qquad
Unit 8 Module B Notes Sections 21.3-21.5
View the PowerPoint, Videos, or Textbook for Module 8A.

Vocabulary Fill in the blanks.

1. (Section 21.3) For any non-negative real numbers a and b and any index k, $\sqrt[k]{a b}=\ldots \quad$ or $\quad=a^{1 / k} \cdot b^{1 / k}$
2. (Section 21.4) \qquad are radicals that have the same index and radicand.
3. (Section 21.5) The procedure for finding an equivalent expression without a radical in the denominator is called \qquad
\qquad
\qquad .
4. (Section 21.5) The expressions $\sqrt{a}+\sqrt{b}$ and $\sqrt{a}-\sqrt{b}$ are called \qquad .

Problems Show ALL steps. Assume that no radicands were formed by raising negative numbers to even powers.

1. (Section 21.3) Multiply and simplify.
a. $\sqrt[3]{\frac{5}{p}} \cdot \sqrt[3]{\frac{2}{q}}$
b. $\sqrt[4]{x} \cdot \sqrt[3]{2 y}$
c. $\sqrt{3 y} \cdot \sqrt{12 y}$
2. (Section 21.3) Simplify by factoring.
a. $\sqrt{300}$
b. $\sqrt{20 a b^{3} c^{2}}$

Name:
Date: \qquad
\qquad
3. (Section 21.3) Divide and simplify. $\frac{\sqrt[4]{x^{3} y^{2}}}{\sqrt[3]{x^{2} y}}$
4. (Section 21.4) Add. $3 \sqrt[3]{y^{5}}+4 \sqrt[3]{y^{2}}+\sqrt[3]{8 y^{2}}$
5. (Section 21.4) Multiply. $(4 \sqrt{3}+\sqrt{y})(\sqrt{3}-5 \sqrt{y})$
6. (Section 21.5) Rationalize the denominator.
a. $\sqrt[3]{\frac{4 x}{5 y}}$
b. $\frac{7}{2-\sqrt{x}}$

