Name:		
Date: _		

Class Time:

View the PowerPoint, Videos, or Textbook for Module 9B.

Vocabulary Fill in the blanks.

1. (Section 24.1) The process of writing a quadratic equation so that one side is a perfect square trinomial is

/1()

called completing	the	
-------------------	-----	--

- 2. (Section 24.2) To solve a quadratic equation:
 - a. Check for the form $x^2 = d \text{ or } (x + c)^2 = d$. If it is in this form use the principle of
 - b. If it is not in the form in step a, write it in form $ax^2 + bx + c = 0$

with a and b nonzero

- c. Then try
- d. If it is not possible to factor or if factoring seems difficult, use the

formula

$$\left(\boldsymbol{x}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\right).$$

3. (Section 24.4) The helps us find the number and type of solutions of a quadratic equation.

Problems Show ALL steps.

1. (Section 24.1) Solve $3x^2 - 9x + 8 = 0$ by completing the square. (Fill in the blanks)

<u>Name</u> : _	
Date:	

Instructor: Class Time: _____

f.

Simplify by rationalizing the denominator

2. (Sections 24.1, 24.3) Use the formula $\mathbf{A} = \mathbf{P}(\mathbf{1} + \mathbf{r})^t$ to find the interest rate (\mathbf{r}) if \$2,000 compounded annually grows to \$2,420 in 2 years. Let A =\$ 2,420, P = \$2,000 and t = 2. Hint: Use the square root property to solve

3. (Section 24.3) A family drives 400 miles [d] to the beach for vacation. The return trip was made at a speed [r] that was 10 miles faster. The total traveling time was $14\frac{2}{3}$ hours [or $\frac{44}{3}$ hours]. Find the speed to the beach and the return speed. Recall $d = r \cdot t$ and $t = \frac{d}{r}$

	Distance [d]	=	Rate [r]	•	Time $\begin{bmatrix} \frac{d}{r} \end{bmatrix}$
To the Beach		_			
Return Home		_			

4. (Section 24.4) Use the discriminant to determine the number and types of solutions and the number of x- intercepts.

Equation	$b^2 - 4ac$	# of solutions	Type of Solution	# x-intercepts
$x^2+2x+1=0$				
$3x^2 + 2 = 0$				
$2x^2-7x-4=0$				

5. (Section 24.4) Find the x-intercepts of $x^4 - 5x^2 + 4 = 0$ Hint: reduce the equation to a quadratic by letting $u = x^2$. Write the x-intercepts as ordered pairs.