\qquad
\qquad

Unit 9 Module B Notes Sections 24.1-24.4

View the PowerPoint, Videos, or Textbook for Module 9B.

Vocabulary Fill in the blanks.

1. (Section 24.1) The process of writing a quadratic equation so that one side is a perfect square trinomial is called completing the \qquad .
2. (Section 24.2) To solve a quadratic equation:
a. Check for the form $\boldsymbol{x}^{2}=\boldsymbol{d}$ or $(\boldsymbol{x}+\boldsymbol{c})^{2}=\boldsymbol{d}$. If it is in this form use the principle of
b. If it is not in the form in step a, write it in \qquad with a and b nonzero
c. Then try \qquad .
d. If it is not possible to factor or if factoring seems difficult, use the formula $\left(x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right)$.
3. (Section 24.4) The \qquad helps us find the number and type of solutions of a quadratic equation.

Problems Show ALL steps.

1. (Section 24.1) Solve $3 x^{2}-9 x+8=0$ by completing the square. (Fill in the blanks)
a. $\quad x^{2}-3 x+\frac{8}{3}=0$

Divide both sides of the equation by
b. $\quad x^{2}-3 x=-\frac{8}{3}$

Subtract \qquad from both sides

$$
\text { Since } \frac{1}{2}(-3)=-\frac{3}{2} \text { and }\left(-\frac{3}{2}\right)^{2}=\frac{9}{4}, \text { we add }
$$ to both sides of the equation

c. $x^{2}-3 x+\frac{9}{4}=-\frac{8}{3}+\frac{9}{4} \quad x^{2}-3 x+\frac{9}{4}=-\frac{32}{12}+\frac{27}{12}$

$$
x^{2}-3 x+\frac{9}{4}=-\frac{5}{12}
$$

d. $\left(x-\frac{3}{2}\right)^{2}=-\frac{5}{12}$

Factor the perfect square trinomial
e. $x-\frac{3}{2}= \pm \sqrt{-\frac{5}{12}}$

Use the principle of \qquad

Name: \qquad
Date: \qquad
f.
\qquad Simplify by rationalizing the denominator
2. (Sections 24.1,24.3) Use the formula $\boldsymbol{A}=\boldsymbol{P}(\mathbf{1}+\boldsymbol{r})^{\boldsymbol{t}}$ to find the interest rate (\boldsymbol{r}) if $\$ 2,000$ compounded annually grows to $\$ 2,420$ in 2 years. Let $A=\$ 2,420, P=\$ 2,000$ and $t=2$. Hint: Use the square root property to solve
3. (Section 24.3) A family drives 400 miles [d] to the beach for vacation. The return trip was made at a speed [r] that was 10 miles faster. The total traveling time was $14 \frac{2}{3}$ hours [or $\frac{44}{3}$ hours]. Find the speed to the beach and the return speed. Recall $\boldsymbol{d}=\boldsymbol{r} \cdot \boldsymbol{t}$ and $\boldsymbol{t}=\frac{\boldsymbol{d}}{\boldsymbol{r}}$

	Distance $[\mathrm{d}]$	$=$	Rate $[\mathrm{r}]$	
To the Beach			Time $\left[\frac{d}{r}\right]$	
Return Home				

4. (Section 24.4) Use the discriminant to determine the number and types of solutions and the number of x - intercepts.

| Equation
 $x^{2}+2 x+1=0$ | $b^{2}-4 a c$ | \# of solutions | Type of Solution | \# x-intercepts |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $3 x^{2}+2=0$ | - | | | |
| $2 x^{2}-7 x-4=0$ | \square | - | | |

5. (Section 24.4) Find the x-intercepts of $x^{4}-5 x^{2}+4=0$ Hint: reduce the equation to a quadratic by letting $\mathrm{u}=x^{2}$. Write the x -intercepts as ordered pairs.
