<u>Name</u> : Date:		/10	Instructor: Class Time:				
Unit 9 Module C Notes Sections 24.5 – 24.7 View the PowerPoint, Videos, or Textbook for Module 9C.							
Vocabulary Fill i	n the blanks.						
 (Section 24.5) has <i>x-value</i> of - 	The graph of $f(x) = ax^2$ $\frac{b}{2a}$.	+bx+c wh	nere <i>a≠0</i> is a parabola ∖	whose			
2. (Section 24.5)	The graph of $g(x) = a(x)$	$(-h)^2 + k$	ooks like the graph of $f($	$x) = ax^2$ except that			
g(x) is translated	units horizonta	ally (left or ri	ght) and				
	units vertically	/ (up or dow	n).				
3. (Section 24.5)	The max or min value of a	a quadratic f	unction occurs at the	of its graph.			
4 . (Section 24.5)	The graph of $f(x) = a(x)$	$(-h)^2 + k$	nas vertex	·			
	The graph of $f(x) = ax^2$	+ k has verte	ex				
	The graph of $f(x) = a(x + a)$	− h)² has ve	ertex				
5 . (Section 24.6)	The x-value of the vertex	can be obta	ined by using the formula	a x = .			

To find the *y-value*, just plug in the *x-value* into the function.

Problems Show ALL steps.

1. (Section 24.5) Graph $f(x) = (x + 1)^2$. Find the intercepts, if they exist and label the vertex and line of symmetry. x = f(x)

 Vertex	Line of symmetry
x intercept	
 v intercept	
 y moreept	V A
-5 -4 -3 -	2 -1 1 2 3 4 5 x

Name: _	
Date:	

Instructor: Class Time: _____

2. (Section 24.6) Given $f(x) = -4x^2 - 7x + 2$ find the vertex, line of symmetry, the maximum or minimum and sketch the graph. Write your answers with fractions reduced to lowest terms.

						У,	↑						
Vertex:						5							
						4							
Line of symmetry:						··3 ··2							
						·· 1							
Maximum or Minimum:		•	•	•							: :		-
		5 —	4 —	3 —2	2 -1	_1	1	1 2	2 3	3 4	4 5	5	x
		5 —	4 —	3 —2	2 —1	-1 -2	1	2	2 3	3 4	1 5	5	x
		5 —	4 —	3 —	2 –1	-1 -2 -3	1	2	2 3	3 4	4 5	5	x
	-	5 —	4 —	3 —2	2 —1	-1 -2 -3 -4 -5	1	2	2	3 4	1	5	x

3. (Section 24.7) The value of a share of a particular stock in dollars can be represented by $V(x) = x^2 - 6x + 13$ where x is the number of months after January 2011.

The lowest value of a share of this particulate stock $V(x)$ reached \$	5	

The lowest value occurred	months after January 2011 or on	(mmyyyy).
---------------------------	---------------------------------	-----------

4. (Section 24.7) A farmer has 100 yards of fencing [Perimeter P = 2l + 2w]. What are the dimensions of the largest rectangular pen that the farmer can enclose [Area A = lw]? What is the maximum possible area? Hint: Complete the square to find the vertex (h, k) or use the vertex formula $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$. Intermediate steps must be shown.

The maximum possible area is	yo	d^2	when the rectangular pen is
yds. wide and	ус	ds.	long