\qquad
\qquad
Unit 9 Module C Notes Sections 24.5-24.7
View the PowerPoint, Videos, or Textbook for Module 9C.

Vocabulary Fill in the blanks.

1. (Section 24.5) The graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$ where $a \neq 0$ is a parabola whose has x-value of $-\frac{b}{2 a}$
2. (Section 24.5) The graph of $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{a}(\boldsymbol{x}-\boldsymbol{h})^{2}+\boldsymbol{k}$ looks like the graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a} \boldsymbol{x}^{2}$ except that $g(x)$ is translated \qquad units horizontally (left or right) and
units vertically (up or down).
3. (Section 24.5) The max or min value of a quadratic function occurs at the \qquad of its graph.
4. (Section 24.5) The graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}(\boldsymbol{x}-\boldsymbol{h})^{2}+\boldsymbol{k}$ has vertex

The graph of $f(x)=\boldsymbol{\alpha} x^{2}+\boldsymbol{k}$ has vertex
\qquad .
\qquad .

The graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}(\boldsymbol{x}-\boldsymbol{h})^{2}$ has vertex
5. (Section 24.6) The x-value of the vertex can be obtained by using the formula $x=$

To find the y-value, just plug in the x-value into the function.

Problems Show ALL steps.

1. (Section 24.5) Graph $f(x)=(x+1)^{2}$. Find the intercepts, if they exist and label the vertex and line of symmetry.

\qquad
\qquad
2. (Section 24.6) Given $f(x)=-4 x^{2}-7 x+2$ find the vertex, line of symmetry, the maximum or minimum and sketch the graph. Write your answers with fractions reduced to lowest terms.

Vertex:

\qquad

Line of symmetry:

\qquad
Maximum or Minimum: \qquad

3. (Section 24.7) The value of a share of a particular stock in dollars can be represented by $\boldsymbol{V}(\boldsymbol{x})=\boldsymbol{x}^{2}-\mathbf{6 x}+13$ where \boldsymbol{x} is the number of months after January 2011.

The lowest value of a share of this particulate stock $V(x)$ reached \$ \qquad .

The lowest value occurred \qquad months after January 2011 or on \qquad (mmyyyy).
4. (Section 24.7) A farmer has 100 yards of fencing [Perimeter $\boldsymbol{P}=\mathbf{2 l}+\mathbf{2 w}$]. What are the dimensions of the largest rectangular pen that the farmer can enclose [Area $\boldsymbol{A}=\boldsymbol{l} \boldsymbol{w}$]? What is the maximum possible area? Hint: Complete the square to find the vertex ($\boldsymbol{h}, \boldsymbol{k}$) or use the vertex formula $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$. Intermediate steps must be shown.

The maximum possible area is yds. wide and
\qquad $y^{2} \quad$ when the rectangular pen is yds. long

