Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page.

$$
\begin{aligned}
& \text { speed }=\frac{\text { distance }}{\text { time }} \quad \text { velocity }=\frac{\text { displacement }}{\text { time }} \quad \text { acceleration }=\frac{\text { change in velocity }}{\text { time }} \\
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad F=m a \quad F_{g}=m g \quad F_{f r}=\mu F_{N} \quad \text { Torque }=\text { Force } \times \text { Lever Arm }
\end{aligned}
$$

1. The coefficient of static friction for steel on steel is 0.58 . If the normal force is 60 N , what is the maximum static friction you can have?

Solution: Static friction can be anythin between zero and $0.58 \times F_{N}$. So the maximum friction is

$$
0.58 \times 60 \mathrm{~N}=34.8 \mathrm{~N}
$$

2. If the kinetic friction is 30 N and the normal friction is 100 N , what is the kinetic coefficient of friction?

Solution:

$$
\begin{gathered}
F_{f r}=\mu \times F_{N} \\
30=\mu \times 100 \\
\mu=\frac{30}{100}=0.3
\end{gathered}
$$

3. An earthmover slows from $15.0 \mathrm{~km} / \mathrm{h}$ to $3.00 \mathrm{~km} / \mathrm{h}$ in 2.70 s . What is its rate of deceleration?

Solution: The speed changes from $4.167 \mathrm{~m} / \mathrm{s}$ to $0.833 \mathrm{~m} / \mathrm{s}$ in 2.70 s

$$
\text { acceleration }=\frac{0.833-4.167}{2.70}=-1.23 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

4. A rocket accelerates at $10.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ from rest for 20.0 s . Find its increase in speed?

Solution:

$$
\text { speed }=\text { initial speed }+ \text { acceleration } \times \text { time }
$$

Increase in speed $=10.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 20.00 \mathrm{~s}=200 \mathrm{~m} / \mathrm{s}$

5 . Find the weight of a $1150-\mathrm{kg}$ automobile in N ?

Solution:

$$
1,150 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=11,270 \mathrm{~N}
$$

6. What is the mass of a $20,000-\mathrm{N}$ truck?

Solution:

$$
\begin{gathered}
\text { weight }=m g \\
m=\frac{\text { weight }}{g}=\frac{20,000}{9.8}=2,040 \mathrm{~kg}
\end{gathered}
$$

7. Find the acceleration produced by a total force of 93.0 N on a mass of 6.00 kg

Solution:

$$
a=\frac{93.0}{6.00}=15.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

8. Find the total force necessary to give each an object with mass 15.0 kg an acceleration of $2.00 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

Solution:

$$
F=15.0 \times 2.00=30.00 \mathrm{~N}
$$

9. Find the total force necessary to give an automobile of mass 120 slugs an acceleration of $11.0 \mathrm{ft} / \mathrm{s}^{2}$.

Solution: We do not need to convert in the metric units. Both numbers are consistent and will give us the answer in force lb

$$
120 \times 11.0=1,320 \mathrm{lb}
$$

10. A truck of mass $13,100 \mathrm{~kg}$ is acted upon by a driving force of 8900 N . The motion is opposed by a frictional force of 2230 N . Find the acceleration

Solution: If $8,900 \mathrm{~N}$ act on the truck, but 2230 N of friction oppose it, then the total force on the truck is $8,900-2,230=6670 \mathrm{~N}$.

$$
\begin{gathered}
F_{n e t}=m a \\
6670=(13,100 \mathrm{~kg}) \times(a) \\
a=\frac{6670}{13,100}=0.51 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{gathered}
$$

11. A force of 20.0 N is applied at a distance of 0.3 m , what is the torque N.m?

Solution:

$$
20.0 \mathrm{~N} \times 0.3 \mathrm{~m}=6.0 \mathrm{~N} . \mathrm{m}
$$

12. If you apply 35.0 lb force at a distance of 0.5 ft , what is the torque in $\mathrm{ft} . \mathrm{lb}$?

Solution:

$$
35.0 \mathrm{lb} \times 0.5 \mathrm{ft}=17.5 \mathrm{ft} . \mathrm{lb}
$$

13. If the torque on a shaft of radius 2.37 cm is 38.0 N.m, what force is applied to the shaft?

Solution: We need to convert the units for the radius from cm to $\mathrm{m}: 2.37 \mathrm{~cm}=$ 0.0237 m

$$
\begin{gathered}
\text { torque }=\text { force } \times \text { lever arm } \\
\text { force }=\frac{\text { torque }}{\text { lever arm }}=\frac{38.0}{0.0237}=1,603 \mathrm{~N}
\end{gathered}
$$

